route(2018.10.24)
建出最短路图之后\(topsort\)即可。
具体思路:
先用\(dijkstra\)算法在原图中跑出\(1\)号点到\(i\)号节点的最短距离\(dist_1(i)\),将所有边反向后用\(dijkstra\)算法求出\(i\)号点到\(2\)号点的最短距离\(dist_2(i)\);
再沿着最短路径找到从\(1\)号点到\(i\)号点的方案数\(f(i)\),以及\(i\)号点到\(2\)号点的方案数\(g(i)\);
如果一条起点为\(a_i\),终点为\(b_i\),长度为\(c_i\)的边满足\(f(a_i)*g(b_i)==f(2)\)且\(dist_1(i)+c_i+dist_2(i)==dist_1(2)\)则该边是原图中从\(1\)号点到\(2\)号的最短路径的必经之路。
将第i条边反向后对该边进行分类讨论
\(1.dist_2(ai)+dist_1(bi)+ci < dist_1(2)\) 则最短路径的长度变短了
\(2.dist_2(ai)+dist_1(bi)+ci == dist_1(2)\) ,则最短路径的长度并没有发生变化
\(3.dist_2(ai)+dist_1(bi)+ci > dist_1(2)\)
\(a.\)如果该边不是原图最短路径的必经之路,则最短路径的长度并没有发生变化
\(b.\)如果该边是原图最短路径的必经之路,则最短路径的长度变长了或者新图中不存在从\(1\)号点到\(2\)号点的路径
(当不存在从\(1\)号点到\(i\)号点的路径时,\(dist_1(i)\)为极大值,\(dist_2(i)\)同理)
时间复杂度\(O((m+n)log(n))\),但当路径数量过多时,\(f\)值和\(g\)值会超出\(int\)的储存范围
期望\(100\)分解法:
在上述求必经之路的时候用拓扑序或者其他方法求在最短路径构成的图上的桥
但是我太傻逼了,唉!
代码:
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
int n,m,x[100001],y[100001],cnt,ans[100001],z[100001],dis[100001],dis1[100001],pre[100001],nxt[100001],h[100001],v[100001],c[100001],sum,in[100001],pree[100001],nxtt[100001],hh[100001],vv[100001],f[100001],g[100001];
struct oo{int x,y;};bool vis[100001];
bool operator<(oo a,oo b){return a.x>b.x;}
priority_queue<oo>q;
void add(int x,int y,int z){pre[++cnt]=y;nxt[cnt]=h[x];h[x]=cnt;v[cnt]=z;}
void ins(int x,int y,int z){pree[++cnt]=y;nxtt[cnt]=hh[x];hh[x]=cnt;vv[cnt]=z;}
void dijkstra(int x,int *dis,int id)
{
memset(vis,0,sizeof vis);
q.push((oo){0,x});dis[x]=0;
while(!q.empty())
{
oo x=q.top();q.pop();
if(vis[x.y])continue;vis[x.y]=1;
for(int i=h[x.y];i;i=nxt[i])
if(dis[pre[i]]>dis[x.y]+v[i])
{
dis[pre[i]]=dis[x.y]+v[i];
q.push((oo){dis[pre[i]],pre[i]});
}
}
}
void topsort(int x,int *f)
{
queue<int>que;
que.push(x);f[x]=1;
while(!que.empty())
{
int now=que.front();que.pop();
for(int i=hh[now];i;i=nxtt[i])
{
f[pree[i]]+=f[now];
if(!(--in[pree[i]]))que.push(pree[i]);
}
}
}
int main()
{
// freopen("route.in","r",stdin);
// freopen("route.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)scanf("%d%d%d",&x[i],&y[i],&z[i]),add(y[i],x[i],z[i]);
memset(dis1,63,sizeof dis1);memset(dis,63,sizeof dis);
dijkstra(2,dis1,0);
memset(h,0,sizeof h);cnt=0;
for(int i=1;i<=m;i++)add(x[i],y[i],z[i]);
dijkstra(1,dis,1);cnt=0;
memset(vis,0,sizeof vis);
for(int i=1;i<=n;i++)
for(int j=h[i];j;j=nxt[j])
if(dis[i]+v[j]+dis1[pre[j]]==dis[2])vis[j]=1,ins(i,pre[j],v[j]),x[cnt]=i,y[cnt]=pre[j],z[cnt]=v[j],in[pre[j]]++;
topsort(1,f);
memset(hh,0,sizeof hh);memset(in,0,sizeof in);int sum=cnt;cnt=0;
for(int i=1;i<=sum;i++)ins(y[i],x[i],z[i]),in[x[i]]++;
topsort(2,g);
for(int i=1;i<=n;i++)
for(int j=h[i];j;j=nxt[j])
{
if(vis[j]){if(f[i]*g[pre[j]]==f[2])ans[j]=1;}
else if(dis1[i]+v[j]+dis[pre[j]]<dis[2])ans[j]=-1;
}
for(int i=1;i<=m;i++)printf("%d\n",ans[i]);
}
route(2018.10.24)的更多相关文章
- python中使用Opencv进行车牌号检测——2018.10.24
初学Python.Opencv,想用它做个实例解决车牌号检测. 车牌号检测需要分为四个部分:1.车辆图像获取.2.车牌定位.3.车牌字符分割和4.车牌字符识别 在百度查到了车牌识别部分车牌定位和车牌字 ...
- 2018.10.24 NOIP2018模拟赛 解题报告
得分: \(100+0+100=200\)(\(T2\)悲惨爆\(0\)) \(P.S.\)由于原题是图片,所以我没有上传题目描述,只有数据. \(T1\):query(点此看题面) 熟悉主席树的人都 ...
- 课堂笔记及知识点----树(2018/10/24(pm))
树 概念:由一个或多个(n≥0)结点组成的有限集合 T, 有且仅有一个结点称为根( root), 当 n>1时,其余的结点分为 m(m≥0)个互不相交的有限集合 T1,T2, …, Tm.每个集 ...
- 课堂笔记及知识点----栈和队列(2018/10/24(am))
栈: Stack<int> xt=new Stack<int>() ; 先进后出,后进先出,水杯结构,顺序表类似 常用方法: .pop---->出栈,弹栈 ...
- 2018.10.24 bzoj3195: [Jxoi2012]奇怪的道路(状压dp)
传送门 f[i][j][k]f[i][j][k]f[i][j][k]表示前iii个点连了jjj条边,第i−K+1i-K+1i−K+1~iii个点连边数的奇偶性为kkk时的方案数. 转移规定只能从后向前 ...
- 2018.10.24 bzoj2064: 分裂(状压dp)
传送门 状压dp好题. 考虑对于两个给出的集合. 如果没有两个元素和相等的子集,那么只能全部拼起来之后再拆开,一共需要n1+n2−2n1+n2-2n1+n2−2. 如果有呢? 那么对于没有的就是子问题 ...
- 2018.10.24 NOIP模拟 小 C 的宿舍(分治)
传送门 分治妙题. 没有这道题的暴力分今天又垫底了啊233 由于用了分治的方法,我们只用考虑左区间对右区间的贡献以及右区间对左区间的贡献. 可以发现如果从中点开始向两边递推最小值并用这个区间最小值来推 ...
- 2018.10.24 NOIP模拟 小 C 的序列(链表+数论)
传送门 考虑到a[l],gcd(a[l],a[l+1]),gcd(a[l],a[l+1],a[l+2])....gcd(a[l]...a[r])a[l],gcd(a[l],a[l+1]),gcd(a[ ...
- 2018.10.24 NOIP模拟 小 C 的数组(二分+dp)
传送门 考试自己yyyyyy的乱搞的没过大样例二分+dp二分+dp二分+dp过了606060把我自己都吓到了! 这么说来乱搞跟被卡常的正解比只少101010分? 那我考场不打其他暴力想正解血亏啊. 正 ...
随机推荐
- myeclipse10集成Tomcat6时出现错误
myeclipse配置Tomcat时出现错误:如图 tomcat6目录:如图 在搜集各种资料后,最终得出结论: 在Tomcat目录中新建temp文件夹,问题解决. 亲测好使.
- nginx启动不了
nginx简介 Nginx是一个高性能的HTTP和反向代理服务器. 支持的操作系统众多,windows.linux. MacOS X: 可实现负载均衡: Rewrite功能强大: 电商架构大部分都采用 ...
- Codeforces Beta Round #88 C. Cycle —— DFS(找环)
题目链接:http://codeforces.com/problemset/problem/117/C C. Cycle time limit per test 2.5 seconds memory ...
- 用mingw-w64 编译 x64 位的ffmpeg
http://blog.sina.com.cn/s/blog_6125d067010168dt.html 工作中用到了ffmpeg x64. 发现编译出来x64的ffmpeg,很不容易.特记录下来.原 ...
- codeforces C. Inna and Huge Candy Matrix 解题报告
题目链接:http://codeforces.com/problemset/problem/400/C 题目意思:给出一个n行m列的矩阵,问经过 x 次clockwise,y 次 horizontal ...
- hdu 1280 前m大的数(排序)
题意:排序 思路:排序 #include<iostream> #include<stdio.h> #include<algorithm> using namespa ...
- CentOS环境 升级Python2.6.6至2.7.5
1.查看当前Python版本 # python -V Python 2.6.6 # python -V Python 2.6.6 2.下载Python2.7.5源码 # wget http://p ...
- 「SDFZ听课笔记」二分图&&网络流
二分图? 不存在奇环(长度为奇数的环)的图 节点能黑白染色,使得不存在同色图相连的图 这两个定义是等价哒. 直观而言,就是这样的图: 二分图有一些神奇的性质,让一些在一般图上复杂度飞天的问题可以在正常 ...
- NMS 原理 了解
NMS 原理:对于Bounding Box的列表B及其对应的置信度S,采用下面的计算方式.选择具有最大score的检测框M,将其从B集合中移除并加入到最终的检测结果D中.通常将B中剩余检测框中与M的I ...
- 算法实现c语言--01
打印九九乘法表 #include<stdio.h> #include<stdlib.h> int main() { , j = ; ; i <= ; i++) { ; j ...