建出最短路图之后\(topsort\)即可。

具体思路:

先用\(dijkstra\)算法在原图中跑出\(1\)号点到\(i\)号节点的最短距离\(dist_1(i)\),将所有边反向后用\(dijkstra\)算法求出\(i\)号点到\(2\)号点的最短距离\(dist_2(i)\);

再沿着最短路径找到从\(1\)号点到\(i\)号点的方案数\(f(i)\),以及\(i\)号点到\(2\)号点的方案数\(g(i)\);

如果一条起点为\(a_i\),终点为\(b_i\),长度为\(c_i\)的边满足\(f(a_i)*g(b_i)==f(2)\)且\(dist_1(i)+c_i+dist_2(i)==dist_1(2)\)则该边是原图中从\(1\)号点到\(2\)号的最短路径的必经之路。

将第i条边反向后对该边进行分类讨论

\(1.dist_2(ai)+dist_1(bi)+ci < dist_1(2)\) 则最短路径的长度变短了

\(2.dist_2(ai)+dist_1(bi)+ci == dist_1(2)\) ,则最短路径的长度并没有发生变化

\(3.dist_2(ai)+dist_1(bi)+ci > dist_1(2)\)

\(a.\)如果该边不是原图最短路径的必经之路,则最短路径的长度并没有发生变化

\(b.\)如果该边是原图最短路径的必经之路,则最短路径的长度变长了或者新图中不存在从\(1\)号点到\(2\)号点的路径

(当不存在从\(1\)号点到\(i\)号点的路径时,\(dist_1(i)\)为极大值,\(dist_2(i)\)同理)

时间复杂度\(O((m+n)log(n))\),但当路径数量过多时,\(f\)值和\(g\)值会超出\(int\)的储存范围

期望\(100\)分解法:

在上述求必经之路的时候用拓扑序或者其他方法求在最短路径构成的图上的桥

但是我太傻逼了,唉!

代码:

#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
int n,m,x[100001],y[100001],cnt,ans[100001],z[100001],dis[100001],dis1[100001],pre[100001],nxt[100001],h[100001],v[100001],c[100001],sum,in[100001],pree[100001],nxtt[100001],hh[100001],vv[100001],f[100001],g[100001];
struct oo{int x,y;};bool vis[100001];
bool operator<(oo a,oo b){return a.x>b.x;}
priority_queue<oo>q;
void add(int x,int y,int z){pre[++cnt]=y;nxt[cnt]=h[x];h[x]=cnt;v[cnt]=z;}
void ins(int x,int y,int z){pree[++cnt]=y;nxtt[cnt]=hh[x];hh[x]=cnt;vv[cnt]=z;}
void dijkstra(int x,int *dis,int id)
{
memset(vis,0,sizeof vis);
q.push((oo){0,x});dis[x]=0;
while(!q.empty())
{
oo x=q.top();q.pop();
if(vis[x.y])continue;vis[x.y]=1;
for(int i=h[x.y];i;i=nxt[i])
if(dis[pre[i]]>dis[x.y]+v[i])
{
dis[pre[i]]=dis[x.y]+v[i];
q.push((oo){dis[pre[i]],pre[i]});
}
}
}
void topsort(int x,int *f)
{
queue<int>que;
que.push(x);f[x]=1;
while(!que.empty())
{
int now=que.front();que.pop();
for(int i=hh[now];i;i=nxtt[i])
{
f[pree[i]]+=f[now];
if(!(--in[pree[i]]))que.push(pree[i]);
}
}
}
int main()
{
// freopen("route.in","r",stdin);
// freopen("route.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)scanf("%d%d%d",&x[i],&y[i],&z[i]),add(y[i],x[i],z[i]);
memset(dis1,63,sizeof dis1);memset(dis,63,sizeof dis);
dijkstra(2,dis1,0);
memset(h,0,sizeof h);cnt=0;
for(int i=1;i<=m;i++)add(x[i],y[i],z[i]);
dijkstra(1,dis,1);cnt=0;
memset(vis,0,sizeof vis);
for(int i=1;i<=n;i++)
for(int j=h[i];j;j=nxt[j])
if(dis[i]+v[j]+dis1[pre[j]]==dis[2])vis[j]=1,ins(i,pre[j],v[j]),x[cnt]=i,y[cnt]=pre[j],z[cnt]=v[j],in[pre[j]]++;
topsort(1,f);
memset(hh,0,sizeof hh);memset(in,0,sizeof in);int sum=cnt;cnt=0;
for(int i=1;i<=sum;i++)ins(y[i],x[i],z[i]),in[x[i]]++;
topsort(2,g);
for(int i=1;i<=n;i++)
for(int j=h[i];j;j=nxt[j])
{
if(vis[j]){if(f[i]*g[pre[j]]==f[2])ans[j]=1;}
else if(dis1[i]+v[j]+dis[pre[j]]<dis[2])ans[j]=-1;
}
for(int i=1;i<=m;i++)printf("%d\n",ans[i]);
}

route(2018.10.24)的更多相关文章

  1. python中使用Opencv进行车牌号检测——2018.10.24

    初学Python.Opencv,想用它做个实例解决车牌号检测. 车牌号检测需要分为四个部分:1.车辆图像获取.2.车牌定位.3.车牌字符分割和4.车牌字符识别 在百度查到了车牌识别部分车牌定位和车牌字 ...

  2. 2018.10.24 NOIP2018模拟赛 解题报告

    得分: \(100+0+100=200\)(\(T2\)悲惨爆\(0\)) \(P.S.\)由于原题是图片,所以我没有上传题目描述,只有数据. \(T1\):query(点此看题面) 熟悉主席树的人都 ...

  3. 课堂笔记及知识点----树(2018/10/24(pm))

    树 概念:由一个或多个(n≥0)结点组成的有限集合 T, 有且仅有一个结点称为根( root), 当 n>1时,其余的结点分为 m(m≥0)个互不相交的有限集合 T1,T2, …, Tm.每个集 ...

  4. 课堂笔记及知识点----栈和队列(2018/10/24(am))

    栈: Stack<int>  xt=new Stack<int>() ; 先进后出,后进先出,水杯结构,顺序表类似 常用方法:   .pop---->出栈,弹栈     ...

  5. 2018.10.24 bzoj3195: [Jxoi2012]奇怪的道路(状压dp)

    传送门 f[i][j][k]f[i][j][k]f[i][j][k]表示前iii个点连了jjj条边,第i−K+1i-K+1i−K+1~iii个点连边数的奇偶性为kkk时的方案数. 转移规定只能从后向前 ...

  6. 2018.10.24 bzoj2064: 分裂(状压dp)

    传送门 状压dp好题. 考虑对于两个给出的集合. 如果没有两个元素和相等的子集,那么只能全部拼起来之后再拆开,一共需要n1+n2−2n1+n2-2n1+n2−2. 如果有呢? 那么对于没有的就是子问题 ...

  7. 2018.10.24 NOIP模拟 小 C 的宿舍(分治)

    传送门 分治妙题. 没有这道题的暴力分今天又垫底了啊233 由于用了分治的方法,我们只用考虑左区间对右区间的贡献以及右区间对左区间的贡献. 可以发现如果从中点开始向两边递推最小值并用这个区间最小值来推 ...

  8. 2018.10.24 NOIP模拟 小 C 的序列(链表+数论)

    传送门 考虑到a[l],gcd(a[l],a[l+1]),gcd(a[l],a[l+1],a[l+2])....gcd(a[l]...a[r])a[l],gcd(a[l],a[l+1]),gcd(a[ ...

  9. 2018.10.24 NOIP模拟 小 C 的数组(二分+dp)

    传送门 考试自己yyyyyy的乱搞的没过大样例二分+dp二分+dp二分+dp过了606060把我自己都吓到了! 这么说来乱搞跟被卡常的正解比只少101010分? 那我考场不打其他暴力想正解血亏啊. 正 ...

随机推荐

  1. Message-oriented middleware

    en.wikipedia.org/wiki/Message-oriented_middleware Message-oriented middleware (MOM) is software or h ...

  2. 如何缓存hbase数据以减少下次取数据的时间

    缓存从hbase取得的数据的好处是显而易见的,缓存到本地以后,如果下次的输入能够直接从已缓存的本地文件中取得数据就无需再次访问hbase数据库,这样一来数据量大的话可以节省大量的访问hbase数据库的 ...

  3. java 浮点数

    package precisenumber; //import java.util.*;public class PreciseNumber { public int fore; public int ...

  4. PAT 天梯赛 L1-049. 天梯赛座位分配 【循环】

    题目链接 https://www.patest.cn/contests/gplt/L1-049 思路 用一个二维数组来保存一个学校每个队员的座位号 然后需要判断一下 目前的座位号 与该学校当前状态下最 ...

  5. 常用git命令和工具

    0. ln -s src_dir  //一个参数即可在当前目录下生成一个软链接   1.git command --clone/push a branch      git clone <url ...

  6. CAS无锁机制原理

    原子类 java.util.concurrent.atomic包:原子类的小工具包,支持在单个变量上解除锁的线程安全编程 原子变量类相当于一种泛化的 volatile 变量,能够支持原子的和有条件的读 ...

  7. js程序开发-3

    <h1>Date()类型</h1> 获取日期和时间 getDate() 获取日 1-31 getDay () 获取星期 0-6 getMonth () 获取月 0-11 get ...

  8. 从ffmpeg filter里出来的数据直接送给avcodec_encode_audio2编码,写文件有错。

    http://hi.baidu.com/mingyuejingque/item/78e71aff57ae9ec5a835a2e4 感谢mingyuejingque st = avformat_new_ ...

  9. 从Github上下载了项目,导入Android Studio,gradle 报错,应该怎么修改

    一.从Github上获取源代码 我这里是直接下载ZIP文件 二.在本机的Android Studio上新建一个空白项目,目的主要是与刚从Github上下载的项目文件结构做对比 三.替换gradle文件 ...

  10. Yii的缓存机制之数据缓存

    具体说法就是可以缓存变量信息. 设置:Yii::app()->cache->set(名字, 值, 过期时间): 使用:Yii::app()->cache->get(名字); 删 ...