euler证明
我们用g(x)表示x的欧拉函数值,即1~x与x互质的数的个数
欧拉函数公式为: g(x)= y*((x1-1)/x1)*((x2-1)/x2)*((x3-1)/x3)....(其中x1, x2, x3....为质数)
证明:
1. 对于质数x,有g(x)=x-1
2. 对于x^h,其中x为质数,那么显然1~x^h之间包含x因子的数不与x^h互质,有:
x, 2*x, 3*x, 4*x.....x^(h-1)*x 共x^(h-1)个,很显然有g(x^h)=x^h-x^(h-1),其中x^(h-1)为
不与x^h互质的数。
例如:
y=3^4
... 3 .2*3.. 3*3 ..4*3. 5*3 3*3*3 .7*3..... 3*3*3*3
g(y)=3^4-3^3
3. 对于任意一个数y,我们可以将其分解成质数的积的形式,再由乘法原理得到g(y)
例如:
y=3^4*5^7
g(y)=(3^4-3^3)*(5^7-5^6)
4. 综上所述:
对于任意y=x1^h1*x2^h2*x3^h3......有:
g(y)=(x1^h1-x1^(h1-1))*(x2^h2-x2^(h2-1))*(x3^h3-x3^(h3-1))....
=x1^h1*(1-1/x1)*x2^h2*(1-1/x2)*x3^h3*(1-1/x3)....
=y*(1-1/x1)*(1-1/x2)*(1-1/x3)....
=y*((x1-1)/x1)*((x2-1)/x2)*((x3-1)/x3)....
至此得到了欧拉函数
代码:
/* int euler(int n){
int ans=1;
for(int i=2; i*i<=n; i++){
if(n%i==0){
ans*=(i-1);
n/=i;
while(n%i==0){
ans*=i;
n/=i;
}
}
}
if(n>1){
ans*=n-1;
}
}*/
int euler(int n){
int ans=n;
for(int i=; i*i<=n; i++){
if(n%i==){
ans=ans*(i-)/i;
while(n%i==){
n/=i;
}
}
}
if(n>){
ans=ans*(n-)/n;
}
}
euler证明的更多相关文章
- 【poj1284-Primitive Roots】欧拉函数-奇素数的原根个数
http://poj.org/problem?id=1284 题意:给定一个奇素数p,求p的原根个数. 原根: { (xi mod p) | 1 <= i <= p-1 } is equa ...
- poj 1284 Primitive Roots (原根)
Primitive Roots http://poj.org/problem?id=1284 Time Limit: 1000MS Memory Limit: 10000K Descr ...
- Primitive Roots(poj1284)
Primitive Roots Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 3928 Accepted: 2342 D ...
- ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭)
欧拉函数,用φ(n)表示 欧拉函数是求小于等于n的数中与n互质的数的数目 辣么,怎么求哩?~(-o ̄▽ ̄)-o 可以先在1到n-1中找到与n不互质的数,然后把他们减掉 比如φ(12) 把12质因数分解 ...
- nyoj1007(euler 函数)
euler(x)公式能计算小于等于x的并且和x互质的数的个数: 我们再看一下如何求小于等于n的和n互质的数的和, 我们用sum(n)表示: 若gcd(x, a)=1,则有gcd(x, x-a)=1: ...
- [家里蹲大学数学杂志]第237期Euler公式的美
1 Euler 公式 $e^{i\pi}+1=0$ (1) 它把 a. $e:$ 自然对数的底 $\approx 2. 718281828459$ (数分) b. $i$: 虚数单位 $=\sqr ...
- The Euler function(线性筛欧拉函数)
/* 题意:(n)表示小于n与n互质的数有多少个,给你两个数a,b让你计算a+(a+1)+(a+2)+......+b; 初步思路:暴力搞一下,打表 #放弃:打了十几分钟没打完 #改进:欧拉函数:具体 ...
- 证明与计算(2): 离散对数问题(Discrete logarithm Problem, DLP)
离散对数问题,英文是Discrete logarithm Problem,有时候简写为Discrete log,该问题是十几个开放数学问题(Open Problems in Mathematics, ...
- 『素数 Prime判定和线性欧拉筛法 The sieve of Euler』
素数(Prime)及判定 定义 素数又称质数,一个大于1的自然数,除了1和它自身外,不能整除其他自然数的数叫做质数,否则称为合数. 1既不是素数也不是合数. 判定 如何判定一个数是否是素数呢?显然,我 ...
随机推荐
- 互联网时代的精准招聘-Uber新手游有感
找工作难.招人也难.漫天的简历,全是求职者广撒网式的复制粘贴,如何找到合适的人.会认真对待职位的人?或许你须要换换思路,看看Uber新出的手机游戏能够咱啥启发. Uber在过去5年已经蹭蹭成长为估值5 ...
- Android 监听返回键退出程序的两种实现
1.Android 双击返回键退出程序 思路:用户按下返回键时设定一个定时器来监控是否2秒内实现了退出,如果用户没有接着按返回键,则清除第一次按返回键的效果,使程序还原到第一次按下返回键之前的状态.定 ...
- Javascript学习之Date对象详解
1.定义 创建 Date 实例用来处理日期和时间.Date 对象基于1970年1月1日世界协调时起的毫秒数 2.语法 构造函数 new Date() new Date(value) value代表自世 ...
- [自动化平台系列] - 初次使用 Macaca-前端自动化测试(1)
1. 所先看一下官方地址,了解一下这个是不是你想要的测试工具 https://macacajs.github.io/macaca/environment-setup.html 2. 去掉sudo -- ...
- ubuntu12.04出现ERROR: Removing 'hello': Device or resource busy和insmod: error inserting 'hello.ko': -1 Device or resource busy解决方案
一:insmod时候错误: 1:错误信息insmod: error inserting 'hello.ko': -1 Device or resource busy 2:原因:你的代码里面的设备号和系 ...
- target!
工作到现在也有8个月了,从学生时代想从事嵌入是开发,到工作中从事android开发,跨度还是比较大的:曾经想从事这些消费类电子产品的开发,想从一个用户变成一个生产者,但是真正进入到这一行之后,才知道在 ...
- Vue 组件实例属性的使用
前言 因为最近面试了二.三十个人,发现大部分都还是只是停留在 Vue 文档的教程.有部分连教程这部分的文档也没看全.所以稍微写一点,让新上手的 Vuer 多了解 Vue 文档的其他更需要关注的点. 因 ...
- 青岛理工交流赛 H题 素数间隙
13110581088注销 素数间隙 Time Limit: 1000MS Memory limit: 262144K 题目描述 Neko猫是一个很喜欢玩数字游戏的会说话的肥猫,经常会想到很多很好玩的 ...
- bzoj3669【NOI2014】魔法森林
题面一道最短路好题…… 开始和喻队长讨论了一下,喻队长一眼切:枚举ai的上界MAX,每次把ai小于等于MAX的边加到图里,以bi为边权跑最短路. 但是,这样做是O(ai*m)的,妥妥TLE,于是我们想 ...
- Android Dalvik虚拟机
虽然Android平台使用Java来开发应用程序,但Android程序却不是运行在标准Java虚拟机上的. 可能是出于效率和版权的考虑,Google为Android专门设计了一套虚拟机Dalvik V ...