storm trident的filter和函数
目的:通过kafka输出的信息进行过滤,添加指定的字段后,进行打印
SentenceSpout:
package Trident; import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties; import org.apache.storm.spout.SpoutOutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichSpout;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Values; import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
import kafka.serializer.StringDecoder;
import kafka.utils.VerifiableProperties; /**
* 从kafka获取数据 spout发射
* @author BFD-593
*
*/
public class SentenceSpout extends BaseRichSpout{
//TODO
private SpoutOutputCollector collector;
private ConsumerConnector consumer;
private int index=0;
@Override
public void nextTuple() {
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put("helloworld", new Integer(1)); StringDecoder keyDecoder = new StringDecoder(new VerifiableProperties());
StringDecoder valueDecoder = new StringDecoder(new VerifiableProperties());
Map<String, List<KafkaStream<String, String>>> consumerMap =
consumer.createMessageStreams(topicCountMap,keyDecoder,valueDecoder);
KafkaStream<String, String> stream = consumerMap.get("helloworld").get(0);
ConsumerIterator<String, String> it = stream.iterator(); int messageCount = 0;
while (it.hasNext()){
String string = it.next().message().toString()+" 1"+" 2";
String name = string.split(" ")[0];
String value = string.split(" ")[1]==null?"":string.split(" ")[1];
String value2= string.split(" ")[2]==null?"":string.split(" ")[2];
this.collector.emit(new Values(name,value,value2));
}
} @Override
public void open(Map map, TopologyContext context, SpoutOutputCollector collector) {
this.collector = collector;
Properties props = new Properties();
// zookeeper 配置
props.put("zookeeper.connect", "192.168.170.185:2181"); // 消费者所在组
props.put("group.id", "testgroup"); // zk连接超时
props.put("zookeeper.session.timeout.ms", "4000");
props.put("zookeeper.sync.time.ms", "200");
props.put("auto.commit.interval.ms", "1000");
props.put("auto.offset.reset", "smallest"); // 序列化类
props.put("serializer.class", "kafka.serializer.StringEncoder"); ConsumerConfig config = new ConsumerConfig(props);
this.consumer = Consumer.createJavaConsumerConnector(config);
} @Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
Fields field = new Fields("name", "sentence","sentence2");
declarer.declare(field);
} }
FunctionBolt:
package Trident; import org.apache.storm.trident.operation.BaseFunction;
import org.apache.storm.trident.operation.TridentCollector;
import org.apache.storm.trident.tuple.TridentTuple;
import org.apache.storm.tuple.Values;
/**
* trident的函数操作:将spout发射的数据,添加一个fileds gender的
* 它不会替换掉原来的tuple
* @author BFD-593
*
*/
public class FunctionBolt extends BaseFunction{ @Override
public void execute(TridentTuple tuple, TridentCollector collector) {
String str = tuple.getStringByField("name");
if(str.equals("a")){
collector.emit(new Values("男"));
}else{
collector.emit(new Values("女"));
}
} }
MyFilter:
package Trident; import java.util.Map; import org.apache.storm.trident.operation.BaseFilter;
import org.apache.storm.trident.operation.TridentOperationContext;
import org.apache.storm.trident.tuple.TridentTuple;
/**
* trident的过滤操作:将spout的发送的tuple,过滤掉fields0是a并且fields1是b的tuple
* @author BFD-593
*
*/
public class MyFilter extends BaseFilter{
private TridentOperationContext context; @Override
public void prepare(Map conf, TridentOperationContext context) {
super.prepare(conf, context);
this.context = context;
}
@Override
public boolean isKeep(TridentTuple tuple) {
String name = tuple.getStringByField("name");
String value = tuple.getStringByField("sentence");
return (!"a".equals(name))||(!"b".equals(value));
} }
PrintFilter:
package Trident; import java.util.Iterator;
import java.util.Map; import org.apache.storm.trident.operation.BaseFilter;
import org.apache.storm.trident.operation.TridentOperationContext;
import org.apache.storm.trident.tuple.TridentTuple;
import org.apache.storm.tuple.Fields;
/**
* 过滤打印所有的fields以及值
* @author BFD-593
*
*/
public class PrintFilter extends BaseFilter{
private TridentOperationContext context = null; @Override
public void prepare(Map conf, TridentOperationContext context) {
super.prepare(conf, context);
this.context = context;
} @Override
public boolean isKeep(TridentTuple tuple) {
Fields fields = tuple.getFields();
Iterator<String> iterator = fields.iterator();
String str = "";
while(iterator.hasNext()){
String next = iterator.next();
Object value = tuple.getValueByField(next);
str = str + next +":"+ value+",";
}
System.out.println(str);
return true;
} }
TopologyTrident:
package Trident; import org.apache.kafka.common.utils.Utils;
import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.trident.TridentTopology;
import org.apache.storm.trident.operation.builtin.Count;
import org.apache.storm.tuple.Fields;
/**
* trident的过滤操作、函数操作、分驱聚合操作
* @author BFD-593
*
*/
public class TopologyTrident {
public static void main(String[] args) {
SentenceSpout spout = new SentenceSpout(); TridentTopology topology = new TridentTopology();
topology.newStream("spout", spout).each(new Fields("name"),new FunctionBolt(),new Fields("gender")).each(new Fields("name","sentence"), new MyFilter())
.each(new Fields("name","sentence","sentence2","gender"), new PrintFilter()); Config conf = new Config(); LocalCluster clu = new LocalCluster();
clu.submitTopology("mytopology", conf, topology.build()); Utils.sleep(100000000);
clu.killTopology("mytopology");
clu.shutdown(); }
}
package Trident;
import java.util.HashMap;import java.util.List;import java.util.Map;import java.util.Properties;
import org.apache.storm.spout.SpoutOutputCollector;import org.apache.storm.task.TopologyContext;import org.apache.storm.topology.OutputFieldsDeclarer;import org.apache.storm.topology.base.BaseRichSpout;import org.apache.storm.tuple.Fields;import org.apache.storm.tuple.Values;
import kafka.consumer.Consumer;import kafka.consumer.ConsumerConfig;import kafka.consumer.ConsumerIterator;import kafka.consumer.KafkaStream;import kafka.javaapi.consumer.ConsumerConnector;import kafka.serializer.StringDecoder;import kafka.utils.VerifiableProperties;
/** * 从kafka获取数据 spout发射 * @author BFD-593 * */public class SentenceSpout extends BaseRichSpout{//TODOprivate SpoutOutputCollector collector;private ConsumerConnector consumer;private int index=0;@Overridepublic void nextTuple() {Map<String, Integer> topicCountMap = new HashMap<String, Integer>(); topicCountMap.put("helloworld", new Integer(1)); StringDecoder keyDecoder = new StringDecoder(new VerifiableProperties()); StringDecoder valueDecoder = new StringDecoder(new VerifiableProperties()); Map<String, List<KafkaStream<String, String>>> consumerMap = consumer.createMessageStreams(topicCountMap,keyDecoder,valueDecoder); KafkaStream<String, String> stream = consumerMap.get("helloworld").get(0); ConsumerIterator<String, String> it = stream.iterator(); int messageCount = 0; while (it.hasNext()){ String string = it.next().message().toString()+" 1"+" 2"; String name = string.split(" ")[0]; String value = string.split(" ")[1]==null?"":string.split(" ")[1]; String value2= string.split(" ")[2]==null?"":string.split(" ")[2]; this.collector.emit(new Values(name,value,value2)); } }
@Overridepublic void open(Map map, TopologyContext context, SpoutOutputCollector collector) {this.collector = collector;Properties props = new Properties(); // zookeeper 配置 props.put("zookeeper.connect", "192.168.170.185:2181"); // 消费者所在组 props.put("group.id", "testgroup"); // zk连接超时 props.put("zookeeper.session.timeout.ms", "4000"); props.put("zookeeper.sync.time.ms", "200"); props.put("auto.commit.interval.ms", "1000"); props.put("auto.offset.reset", "smallest"); // 序列化类 props.put("serializer.class", "kafka.serializer.StringEncoder"); ConsumerConfig config = new ConsumerConfig(props); this.consumer = Consumer.createJavaConsumerConnector(config);}
@Overridepublic void declareOutputFields(OutputFieldsDeclarer declarer) {Fields field = new Fields("name", "sentence","sentence2");declarer.declare(field);}
}
storm trident的filter和函数的更多相关文章
- storm trident function函数
package cn.crxy.trident; import java.util.List; import backtype.storm.Config; import backtype.storm. ...
- Strom-7 Storm Trident 详细介绍
一.概要 1.1 Storm(简介) Storm是一个实时的可靠地分布式流计算框架. 具体就不多说了,举个例子,它的一个典型的大数据实时计算应用场景:从Kafka消息队列读取消息( ...
- Storm Trident API
在Storm Trident中有五种操作类型 Apply Locally:本地操作,所有操作应用在本地节点数据上,不会产生网络传输 Repartitioning:数据流重定向,单纯的改变数据流向,不会 ...
- Storm专题二:Storm Trident API 使用具体解释
一.概述 Storm Trident中的核心数据模型就是"Stream",也就是说,Storm Trident处理的是Stream.可是实际上Stream是被成批处理的. ...
- storm trident 示例
Storm Trident的核心数据模型是一批一批被处理的“流”,“流”在集群的分区在集群的节点上,对“流”的操作也是并行的在每个分区上进行. Trident有五种对“流”的操作: 1. 不 ...
- storm trident merger
import java.util.List; import backtype.storm.Config; import backtype.storm.LocalCluster; import back ...
- Python【day 14-5】sorted filter map函数应用和练习
'''''' ''' 内置函数或者和匿名函数结合输出 4,用map来处理字符串列表,把列表中所有人都变成sb,比方alex_sb name=[‘oldboy’,'alex','wusir'] 5,用m ...
- lambda匿名函数sorted排序函数filter过滤函数map映射函数
lambda函数:表示匿名函数,不需要def来声明,一句话就能搞定. 语法:函数名=lamda 参数:返回值 求10的10次方 f=lambda n:n**n print(f(10)) 注意: 函数名 ...
- storm trident 的介绍与使用
一.trident 的介绍 trident 的英文意思是三叉戟,在这里我的理解是因为之前我们通过之前的学习topology spout bolt 去处理数据是没有问题的,但trident 的对spou ...
随机推荐
- 001 - 配置Pycharm的字体大小
本文记录的是Pycharm2017年1月版本 1 配置代码区的字体大小 位置在 File -> setting -> Editor -> Color&Fonts -> ...
- CodeForces960F:Pathwalks (主席树+DP)
You are given a directed graph with n nodes and m edges, with all edges having a certain weight. The ...
- vue 路由跳转到外部链接
尝试了几次发现,不论怎么写外部链接,最后跳转的路径都会加上localhost:3030; 这个应该是和vue的路由有关系,最后解决方法, window.location = 'http://www.b ...
- Windows_Program_Via_C_Translate_Win32编程的背景知识/基础知识_包括基本输入输出机制介绍
Some Basic Background Story of The Win32 APIs Win32 API背景故事/背景知识 The Win32 application programming i ...
- bzoj 2083 [Poi2010]Intelligence test——思路+vector/链表
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2083 给每个值开一个vector.每个询问挂在其第一个值上:然后枚举给定序列,遇到一个值就访 ...
- Code-NFine:NFine权限控制
ylbtech-Code-NFine:NFine权限控制 1.返回顶部 1. NFine框架研究 1.前台业务操作 1.1 系统菜单配置方法 1.2 菜单管理配置方法 1.2.1 按钮管理 1.2.2 ...
- 五、怎样修改oracle某个用户的密码
1.键入命令:sqlplus / as sysdba 2.在sqlplus窗口执行命令: alter user you_username identified by you_password;
- HDOJ-2037
今年暑假不AC Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- jquery 快速入门二
---恢复内容开始--- 操作标签 样式操作 样式类 addClass();//添加指定的CSS类名. removeClass();//移除指定的类名. hasClass();//判断样式不存在 to ...
- CCF 201509-3 模板生成系统 (STL+模拟)
问题描述 成成最近在搭建一个网站,其中一些页面的部分内容来自数据库中不同的数据记录,但是页面的基本结构是相同的.例如,对于展示用户信息的页面,当用户为 Tom 时,网页的源代码是 而当用户为 Jerr ...