题目描述

奈特公司是一个巨大的情报公司,它有着庞大的情报网络。情报网络中共有n名情报员。每名情报员口J-能有若T名(可能没有)下线,除1名大头日外其余n-1名情报员有且仅有1名上线。奈特公司纪律森严,每名情报员只能与自己的上、下线联系,同时,情报网络中仟意两名情报员一定能够通过情报网络传递情报。奈特公司每天会派发以下两种任务中的一个任务:
1.搜集情报:指派T号情报员搜集情报
2.传递情报:将一条情报从X号情报员传递给Y号情报员
情报员最初处于潜伏阶段,他们是相对安全的,我们认为此时所有情报员的危险值为0;-旦某个情报员开始搜集情报,他的危险值就会持续增加,每天增加1点危险值(开始搜集情报的当天危险值仍为0,第2天危险值为1,第3天危险值为2,以此类推)。传递情报并不会使情报员的危险值增加。
为了保证传递情报的过程相对安全,每条情报都有一个风险控制值C。余特公司认为,参与传递这条情报的所有情报员中,危险值大于C的情报员将对该条情报构成威胁。现在,奈特公司希望知道,对于每个传递情报任务,参与传递的情报员有多少个,其中对该条情报构成威胁的情报员有多少个。

输入

第1行包含1个正整数n,表示情报员个数。
笫2行包含n个非负整数,其中第i个整数Pi表示i号情报员上线的编号。特别地,若Pi=0,表示i号情报员是大头目。
第3行包含1个正整数q,表示奈特公司将派发q个任务(每天一个)。
随后q行,依次描述q个任务。
每行首先有1个正整数k。若k=1,表示任务是传递情报,随后有3个正整数Xi、Yi、Ci,依次表示传递情报的起点、终点和风险控制值;若k=2,表示任务是搜集情报,随后有1个正整数Ti,示搜集情报的情报员编号。

输出

对于每个传递情报任务输出一行,应包含两个整数,分别是参与传递情报的情报员个数和对该条情报构成威胁的情报员个数。
输出的行数应等于传递情报任务的个数,每行仅包含两个整数,用一个空格隔开。输出不应包含多余的空行和空格。

样例输入

7
0 1 1 2 2 3 3
6
1 4 7 0
2 1
2 4
2 7
1 4 7 1
1 4 7 3

样例输出

5 0
5 2
5 1


题目大意

给出一棵树,有两种操作:1.标记一个点;2.询问两点间路径长度及路径上上有多少个点在 当前时间减去ci 之前被标记过

题解

主席树

看懂了题就好做多了。

考虑到修改操作比较麻烦,由于c>0,表明后面对前面没有影响,可以调换顺序。

我们可以离线处理,先将所有点标记上(即赋权值为标记时间),然后离线查找即可。

之后就是套路,点x在fa[x]之上建立主席树,查询x、y时相当于1->x + 1->y - 1->lca(x,y) - 1->fa[lca(x,y)]。

注意一下 当前时间-ci<=0 时的特判

#include <cstdio>
#include <algorithm>
#define N 200010
using namespace std;
int m , head[N] , to[N] , next[N] , cnt , fa[N][20] , deep[N] , log[N] , opt[N] , x[N] , y[N] , c[N] , p[N];
int root[N] , ls[N * 20] , rs[N * 20] , si[N * 20] , tot;
void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void ins(int p , int l , int r , int x , int &y)
{
y = ++tot , si[y] = si[x] + 1;
if(l == r) return;
int mid = (l + r) >> 1;
if(p <= mid) rs[y] = rs[x] , ins(p , l , mid , ls[x] , ls[y]);
else ls[y] = ls[x] , ins(p , mid + 1 , r , rs[x] , rs[y]);
}
void dfs(int x)
{
int i;
if(p[x]) ins(p[x] , 1 , m , root[fa[x][0]] , root[x]);
else root[x] = root[fa[x][0]];
for(i = 1 ; i <= log[deep[x]] ; i ++ ) fa[x][i] = fa[fa[x][i - 1]][i - 1];
for(i = head[x] ; i ; i = next[i]) deep[to[i]] = deep[x] + 1 , dfs(to[i]);
}
int getlca(int x , int y)
{
int i;
if(deep[x] < deep[y]) swap(x , y);
for(i = log[deep[x] - deep[y]] ; ~i ; i -- )
if(deep[x] - (1 << i) >= deep[y])
x = fa[x][i];
for(i = log[deep[x]] ; ~i ; i -- )
if(deep[x] >= (1 << i) && fa[x][i] != fa[y][i])
x = fa[x][i] , y = fa[y][i];
return x == y ? x : fa[x][0];
}
int query(int p , int l , int r , int a , int b , int c , int d)
{
if(l == r) return si[a] + si[b] - si[c] - si[d];
int mid = (l + r) >> 1;
if(p <= mid) return query(p , l , mid , ls[a] , ls[b] , ls[c] , ls[d]);
else return query(p , mid + 1 , r , rs[a] , rs[b] , rs[c] , rs[d]) + si[ls[a]] + si[ls[b]] - si[ls[c]] - si[ls[d]];
}
int main()
{
int n , i , f;
scanf("%d%*d" , &n);
for(i = 2 ; i <= n ; i ++ ) scanf("%d" , &fa[i][0]) , add(fa[i][0] , i) , log[i] = log[i >> 1] + 1;
scanf("%d" , &m);
for(i = 1 ; i <= m ; i ++ )
{
scanf("%d%d" , &opt[i] , &x[i]);
if(opt[i] == 1) scanf("%d%d" , &y[i] , &c[i]);
else if(!p[x[i]]) p[x[i]] = i;
}
dfs(1);
for(i = 1 ; i <= m ; i ++ )
if(opt[i] == 1)
f = getlca(x[i] , y[i]) , printf("%d %d\n" , deep[x[i]] + deep[y[i]] - 2 * deep[f] + 1 , i - c[i] > 0 ? query(i - c[i] - 1 , 1 , m , root[x[i]] , root[y[i]] , root[f] , root[fa[f][0]]) : 0);
return 0;
}

【bzoj4448】[Scoi2015]情报传递 主席树的更多相关文章

  1. BZOJ4448[Scoi2015]情报传递——主席树+LCA

    题目描述 奈特公司是一个巨大的情报公司,它有着庞大的情报网络.情报网络中共有n名情报员.每名情报员口J-能有 若T名(可能没有)下线,除1名大头目外其余n-1名情报员有且仅有1名上线.奈特公司纪律森严 ...

  2. bzoj4448 [Scoi2015]情报传递 主席树+树上差分

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4448 题解 练习一下主席树的基础练习题找回感觉. 对于每一次询问,第一问显然随便做. 第二问的 ...

  3. 【BZOJ4448】[Scoi2015]情报传递 主席树+LCA

    [BZOJ4448][Scoi2015]情报传递 Description 奈特公司是一个巨大的情报公司,它有着庞大的情报网络.情报网络中共有n名情报员.每名情报员能有若干名(可能没有)下线,除1名大头 ...

  4. bzoj 4448 [Scoi2015]情报传递 主席树

    比较套路的题目. 可以发现难点在于某个点的权值动态修改 且我们要维护树上一条路径上的点权>x的个数. 每个点都在动态修改 这意味着我们的只能暴力的去查每个点. 考虑将所有可以动态修改的点变成静态 ...

  5. 4448: [Scoi2015]情报传递|主席树|离线操作

    能够把全部的操作离线,然后树链剖分将全部人搜集情报的时间增加到主席树中,查询的时候能够直接查询搜集情报时间≤i−C[i]−1的人的个数 时间复杂度n∗log22n,空间复杂度n∗log2n #incl ...

  6. BZOJ4448 SCOI2015情报传递(离线+树链剖分+树状数组)

    即滋磁单点修改,询问路径上小于某数的值有多少个.暴力树剖套个主席树(或者直接树上主席树,似乎就1个log了?感觉不一定比两个log快)即可,然而不太优美. 开始觉得可以cdq,然而就变成log^3了. ...

  7. 洛谷P4216 [SCOI2015]情报传递(树剖+主席树)

    传送门 我们可以进行离线处理,把每一个情报员的权值设为它开始收集情报的时间 那么设询问的时间为$t$,就是问路径上有多少个情报员的权值小于等于$t-c-1$ 这个只要用主席树上树就可以解决了,顺便用树 ...

  8. bzoj4448 SCOI2015 情报传递 message

    传送门bzoj4448 题解 离线之后构建树上主席树,每个点的线段树维护到根路径的信息,不用链剖(我的链剖只是拿来求\(\mathrm{lca}\)的),时空复杂度\(O(n\log{n})\). c ...

  9. 2019.03.26 bzoj4448: [Scoi2015]情报传递(归并排序+树链剖分)

    传送门 题意简述: 给一棵nnn个点的树,树上每个点表示一个情报员,一共有mmm天,每天会派发以下两种任务中的一个任务: 1.搜集情报:指派T号情报员搜集情报 2.传递情报:将一条情报从X号情报员传递 ...

随机推荐

  1. 数组使用NSUserDefaults存储的问题,

    最近在做搜索记录的时候,由于搜索记录是存储在本地的,而且都是字符串,我考虑到数据量也不是太大,于是就懒的使用数据库了. 于是就想到了NSUserDefaults 存储的方式, 但是由于之间对于数组没有 ...

  2. Unity的sendmessage用法

    刚学完sendmessage用法,自己也尝试测试了一下,用法如下: 1.在unity2017新建一个场景test 2.在场景中添加一个立方体cube作为主角,另添加一个胶囊体capsule,调整为如图 ...

  3. WP Mail SMTP插件解决Contact Form 7表单提交失败问题

    WP Mail SMTP插件解决Contact Form 7表单提交失败问题 WP Mail SMTP是一款非常优秀的解决WordPress主机因为不支持或者是禁用了mail()函数,导致无法实现在线 ...

  4. 关于小程序button控件上下边框的显示和隐藏问题

    问题: 小程序的button控件上下有一条淡灰色的边框,在空件上加上了样式 border:(none/0); 都没办法让button上下的的边框隐藏: 代码如下 <button class=&q ...

  5. 自动布局之-NSLayoutConstraint

    AutoLayout概念是苹果自iOS6开始引入的概念. 目前为止,实现自动布局技术选型方面也可以使用xib和storyboard.在开发过程中通常登录.注册等变动可能性较小的视图,我会采用xib开发 ...

  6. 32-3题:LeetCode103. Binary Tree Zigzag Level Order Traversal锯齿形层次遍历/之字形打印二叉树

    题目 给定一个二叉树,返回其节点值的锯齿形层次遍历.(即先从左往右,再从右往左进行下一层遍历,以此类推,层与层之间交替进行). 例如: 给定二叉树 [3,9,20,null,null,15,7], 3 ...

  7. Zabbix监控告警Lack of free swap space on Zabbix server解决办法

    报错详情如下: 是因为Zabbix监控没有考虑虚拟主机的交换空间情况 解决办法修改配置 修改表达式内容:{Template OS Linux:system.swap.size[,pfree].last ...

  8. centos7上mysql8.0rpm方式安装

    首先是下载图解 1.首先卸载centos7中自带的mariadb rpm -qa|grep mariadb //查询出来已安装的mariadb rpm -e --nodeps 文件名 //卸载mari ...

  9. 快速搭建FTP服务

    Linux下ftp服务可以通过搭建vsftpd服务来实现,以CentOS为例,首先查看系统中是否安装了vsftpd,可以通过执行命令 rpm -qa | grep vsftpd 来查看是否安装相应的包 ...

  10. json数据格式及json格式化工具推荐

    JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,采用完全独立于编程语言的文本格式来存储和表示数据. 易于人阅读和编写,同时也易于机器解析和生成. XML也 ...