题目描述

黑恶势力的反攻计划被小C成功摧毁,黑恶势力只好投降。秋之国的人民解放了,举国欢庆。此时,原秋之国总统因没能守护好国土,申请辞职,并请秋之国人民的大救星小C钦定下一任。作为一名民主人士,小C决定举行全民大选来决定下一任。为了使最后成为总统的人得到绝大多数人认同,小C认为,一个人必须获得超过全部人总数的一半的票数才能成为总统。如果不存在符合条件的候选人,小C只好自己来当临时大总统。为了尽可能避免这种情况,小C决定先进行几次小规模预选,根据预选的情况,选民可以重新决定自己选票的去向。由于秋之国人数较多,统计投票结果和选票变更也成为了麻烦的事情,小C找到了你,让你帮他解决这个问题。
【问题描述】秋之国共有n个人,分别编号为1,2,…,n,一开始每个人都投了一票,范围1~n,表示支持对应编号的人当总统。共有m次预选,每次选取编号[li,ri]内的选民展开小规模预选,在该区间内获得超过区间大小一半的票的人获胜,如果没有人获胜,则由小C钦定一位候选者获得此次预选的胜利(获胜者可以不在该区间内),每次预选的结果需要公布出来,并且每次会有ki个人决定将票改投向该次预选的获胜者。全部预选结束后,公布最后成为总统的候选人

输入

第一行两个整数n,m,表示秋之国人数和预选次数。
第二行n个整数,分别表示编号1~n的选民投的票。
接下来m行,每行先有4个整数,分别表示li,ri,si,ki,si表示若此次预选无人胜选,视作编号为si的人获得胜利
接下来ki个整数,分别表示决定改投的选民。
1<=n,m<=500,000,Σki<=1,000,000,1<=li<=ri<=n,1<=si<=n。

输出

共m+1行,前m行表示各次预选的结果,最后一行表示最后成为总统的候选人,若最后仍无人胜选,输出-1。

样例输入

5 4
1 2 3 4 5
1 2 1 1 3
5 5 1 2 2 4
2 4 2 0
3 4 2 1 4

样例输出

1
5
5
2
-1


题解

随机化+线段树

考虑如果区间中一个数的出现次数等于区间长度的一半,那么期望随机找两次即可找到该数。

所以理论上看,每次随机找20次,完全正确地处理500000个询问的概率约为0.62。而实际上由于数据水,随机15次即可AC。

然后就是找某数在区间中出现的次数,直接对每个数开一棵线段树即可。

时间复杂度$O(15n\log n)$,实际上本题很卡时(卡随机化),需要使用结构体写线段树才可以卡过。

#include <cstdio>
#include <cstdlib>
#include <algorithm>
#define N 500010
#define lson l , mid , a[x].ls
#define rson mid + 1 , r , a[x].rs
using namespace std;
struct data
{
int ls , rs , si;
}a[N * 60];
int w[N] , root[N] , tot;
inline int read()
{
int ret = 0; char ch = getchar();
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9') ret = ret * 10 + ch - '0' , ch = getchar();
return ret;
}
void update(int p , int v , int l , int r , int &x)
{
if(!x) x = ++tot;
a[x].si += v;
if(l == r) return;
int mid = (l + r) >> 1;
if(p <= mid) update(p , v , lson);
else update(p , v , rson);
}
int query(int b , int e , int l , int r , int x)
{
if(!x) return 0;
if(b <= l && r <= e) return a[x].si;
int mid = (l + r) >> 1 , ans = 0;
if(b <= mid) ans += query(b , e , lson);
if(e > mid) ans += query(b , e , rson);
return ans;
}
int main()
{
srand(2333666);
int n , m , i , l , r , s , k , x , p , t;
n = read() , m = read();
for(i = 1 ; i <= n ; i ++ ) w[i] = read() , update(i , 1 , 1 , n , root[w[i]]);
while(m -- )
{
l = read() , r = read() , s = read() , k = read() , p = 0;
for(i = 1 ; i <= 15 ; i ++ )
{
t = w[rand() % (r - l + 1) + l];
if(query(l , r , 1 , n , root[t]) > (r - l + 1) >> 1)
{
p = t;
break;
}
}
if(!p) p = s;
printf("%d\n" , p);
for(i = 1 ; i <= k ; i ++ ) x = read() , update(x , -1 , 1 , n , root[w[x]]) , update(x , 1 , 1 , n , root[p]) , w[x] = p;
}
p = -1;
for(i = 1 ; i <= 15 ; i ++ )
{
t = w[rand() % n + 1];
if(a[root[t]].si > n >> 1)
{
p = t;
break;
}
}
printf("%d\n" , p);
return 0;
}

【bzoj4966】总统选举 随机化+线段树的更多相关文章

  1. BZOJ4966 : 总统选举

    线段树维护每个点的最有可能是答案的数以及它的权重. 合并两个节点的时候,将权重互相抵消,保留较大的那一个. 得到答案后,再在对应权值的Treap中查询出现次数,检查是否真正是答案. 时间复杂度$O(n ...

  2. 【BZOJ4966】总统选举 线段树+随机化

    [BZOJ4966]总统选举 Description 黑恶势力的反攻计划被小C成功摧毁,黑恶势力只好投降.秋之国的人民解放了,举国欢庆.此时,原秋之国总统因没能守护好国土,申请辞职,并请秋之国人民的大 ...

  3. luogu P3765 总统选举(线段树维护摩尔投票+平衡树)

    这题需要一个黑科技--摩尔投票.这是一个什么东西?一个神奇的方法求一个序列中出现次数大于长度一半的数. 简而言之就是同加异减: 比如有一个代表投票结果的序列. \[[1,2,1,1,2,1,1]\] ...

  4. 51nod 1494 选举拉票 (线段树+扫描线)

    1494 选举拉票  题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 现在你要竞选一个县的县长.你去对每一个选民进 ...

  5. 51nod 1494 选举拉票 | 线段树

    51nod1494 选举拉票 题面 现在你要竞选一个县的县长.你去对每一个选民进行了调查.你已经知道每一个人要选的人是谁,以及要花多少钱才能让这个人选你.现在你想要花最少的钱使得你当上县长.你当选的条 ...

  6. 洛谷 P3765 总统选举 解题报告

    P3765 总统选举 题目背景 黑恶势力的反攻计划被小C成功摧毁,黑恶势力只好投降.秋之国的人民解放了,举国欢庆.此时,原秋之国总统因没能守护好国土,申请辞职,并请秋之国人民的大救星小C钦定下一任.作 ...

  7. hdu5091 线段树

    题意: 给了n个点在平面中 n<10000  然后 将这给了一个 宽为W 高为 H 的 矩形, 然后 使得这个矩形可以 涵盖最多的点有多少个,然后矩形的宽平行x 轴高平行y轴.可以将该矩形 水平 ...

  8. bzoj3932--可持久化线段树

    题目大意: 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第 ...

  9. codevs 1082 线段树练习 3(区间维护)

    codevs 1082 线段树练习 3  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...

随机推荐

  1. hdu-3371 Connect the Cities---kruskal

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3371 题目大意: 给n个城市,m条路,k组已知路,求最小费用联通所有城市: 解题思路: kruska ...

  2. FreeRTOS_软件定时器

    FreeRTOS 软件定时器 实验 创建2个任务,start_task.timercontrol_task. start_stask:创建timercontrol_task任务:创建周期定时器Auto ...

  3. SQL小知识_长期总结

    1. 左联接右联接区别 left join(左联接) 返回包括左表中的所有记录和右表中联结字段相等的记录 right join(右联接) 返回包括右表中的所有记录和左表中联结字段相等的记录inner ...

  4. nginx反向代理与正向代理的区别

    http://blog.csdn.net/m13666368773/article/details/8060481

  5. 从指定的view中截图 返回UIImage

    -(UIImage *)getImageFromView:(UIView *)view{ UIGraphicsBeginImageContext(view.bounds.size); [view.la ...

  6. CSS的垂直居中和水平居中总结

    内联元素居中方案 水平居中设置: 行内元素 设置 text-align:center: Flex布局 设置display:flex;justify-content:center;(灵活运用) 垂直居中 ...

  7. 随机数生成器java实现

    /** 设计一个随机数生成器,可以产生给定平均概率的随机证书序列. 即输入一个概率比如:0.9 然后输入要求的概率样本个数比如:1000 输出一个接近所输入的0.9的概率数(要求样本数越大越接近输入的 ...

  8. APCInject

    #include <iostream> #include <Windows.h> #include <TlHelp32.h> using namespace std ...

  9. pycharm clion rider 注册

    JetBrains 公司出品的pycharm clion rider 专业版本都需要注册才能运行,这里有个免费注册方法: JetBrains授权服务器2017.10.7授权方法:激活时选择Licens ...

  10. Firebase Cloud Function 编写与部署

    1.设置和初始化 Firebase SDK for Cloud Functions (1).Cloud Functions 运行的是 Node v6.14.0,因此需要安装nodejs: https: ...