[gym101982M][思维好题][凸壳]Mobilization

题目链接

20182019-acmicpc-pacific-northwest-regional-contest-div-1-en.pdf

题目大意

现在有\(n\)种士兵,每种士兵有一个血量\(h_i\)和潜力\(p_i\)以及花销\(c_i\)。

你一共有\(C\)块钱,现在你要用这些钱去雇佣士兵,你雇佣某种士兵的数量可以是任意实数(也就是说并不一定要整数)。最后你构建出来军团的战斗力等于总血量与总潜力的乘积。

\((n\le3\times 10^4, 1\le C\le 10^5,1\le c_i \le 10^5, 0.0\le h_i,p_i\le 1.0)\)

做法分析

为了简化问题,我们将每个人看作一个向量\(\mathbf{v}\)。

\[\mathbf{v}_i = C
\begin{bmatrix}
\frac{h_i}{c_i} \\
\\
\frac{p_i}{c_i} \\
\end{bmatrix}
\]

这样构造是因为可以将组建军团的过程简化成一个向量集合的线性组合。

我们可以将最后组合出来的向量视作一个新的向量\(\mathbf{u}\),其两维的乘积即为答案。

\[\mathbf{u} = \sum_{i=1}^n x_i\mathbf{v}_i \\
需要满足\sum_{i=1}^n x_i \le 1 \\
求 \max\{\mathbf{u}_0 \times \mathbf{u}_1\}
\]

可以发现这样的形式正好描述了一个平面上一个点集(将每个向量\(v_i\)的终点看作一个点,起点为原点),构成凸包,内部的点的贡献被覆盖。

我们的答案一定在凸壳上且最偏右上角的边界上,因为\(f(x,y) = xy , x\ge0,y\ge0\)(相当于两维相乘的值)的最值总是在凸型区域的右上角取到(马鞍形)。以下是无聊做的图...

由于答案总在右上角的边界上,我们只要维护上凸壳即可,,问题解决,复杂度\(O(N\log N)\)

PS:代码是纯c,就是想尝试一下新东西,绘制了几个图片,好理解一点,这篇题解就是纯消磨时间的..。

/*
gym101982m, 数学,优化,函数最值
*/
#include <stdio.h>
#include <stdlib.h>
#define max(a, b) (a) > (b) ? (a) : (b);
#define min(a, b) (a) < (b) ? (a) : (b);
#define N 30005
#define eps 1e-7
typedef long long LL;
struct point {
double x, y;
};
inline struct point sub(struct point a, struct point b) {
return (struct point){.x = a.x - b.x, .y = a.y - b.y};
}
inline double cross(struct point a, struct point b) {
return a.x * b.y - a.y * b.x;
}
inline int sgn(double x) { return (x > eps) - (x < eps); }
int cmp(const void* a, const void* b) {
struct point* p = (struct point*)a;
struct point* q = (struct point*)b;
if (!sgn(p->x - q->x)) {
return sgn(p->y - q->y);
} else
return sgn(p->x - q->x);
}
double calc(struct point u, struct point v) {
double A = (u.x - v.x) * (u.y - v.y);
double B = (u.x - v.x) * v.y + (u.y - v.y) * v.x;
double C = v.x * v.y;
double x = -0.5 * B / A;
if (sgn(x - 0.0) <= 0)
return 0;
else
x = min(x, 1.0);
return (A * x + B) * x + C;
}
int main() {
struct point v[N], ch[N];
double c[N], h[N], p[N], ans = 0.0;
int n, C, m = 0; scanf("%d%d", &n, &C);
for (int i = 0; i < n; i++) {
scanf("%lf%lf%lf", &c[i], &h[i], &p[i]);
v[i] = (struct point){.x = h[i] / c[i] * C, .y = p[i] / c[i] * C};
ans = max(ans, v[i].x * v[i].y);
}
qsort(v, n, sizeof(v[0]), cmp);
/* for (int i = 0; i < n; i++) {
printf("point %.3f %.3f\n", v[i].x, v[i].y);
}*/
for (int i = 0; i < n; i++) {
while (m > 1 &&
sgn(cross(sub(ch[m - 1], ch[m - 2]), sub(v[i], ch[m - 2]))) > 0)
m--;
ch[m++] = v[i];
}
/* for (int i = 0; i < m; i++) {
printf("convex hull %.3f %.3f\n", ch[i].x, ch[i].y);
}*/
for (int i = 0; i < m - 1; i++) {
ans = max(ans, calc(ch[i], ch[i + 1]));
}
printf("%.2f\n", ans);
return 0;
}
/*
4 100000
300 1 0.02
500 0.2 1
250 0.3 0.1
1000 1 0.1
*/

[Gym101982M][思维好题][凸壳]Mobilization的更多相关文章

  1. ZOJ 3937 More Health Points (2016 浙江省赛 B题,可持久维护凸壳)

    题目链接  2016 ZJCPC Problem B 题意  CF 660F的树上版本. 其他做的方法都差不多,关键是把凸壳放到树上. 每次确定扔掉几个元素的时候直接$O(1)$修改(先不清楚这个位置 ...

  2. [BZOJ2726][SDOI2012]任务安排(DP+凸壳二分)

    2726: [SDOI2012]任务安排 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1580  Solved: 466[Submit][Statu ...

  3. XVIII Open Cup named after E.V. Pankratiev. Grand Prix of Khamovniki Problem J Stairways解题报告(分块+维护凸壳)

    首先ORZ一发Claris聚聚的题解:http://www.cnblogs.com/clrs97/p/8689215.html,不然我可能没机会补过这道神题了. 这里写一个更详细的题解吧(我还是太菜了 ...

  4. bzoj2402 陶陶的难题II 分数规划+树剖+线段树维护凸壳+二分

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2402 题解 看上去很像分数规划的模型.于是就二分吧.令 \[ \begin{align*}\f ...

  5. 【JZOJ3299】【SDOI2013】保护出题人 三分+凸壳

    题面 ​出题人铭铭认为给SDOI2012 出题太可怕了,因为总要被骂,于是他又给SDOI2013 出题了. 参加SDOI2012 的小朋友们释放出大量的僵尸,企图攻击铭铭的家.而你作为SDOI2013 ...

  6. YbtOJ#853-平面标记【整体二分,凸壳】

    正题 题目链接:http://www.ybtoj.com.cn/contest/119/problem/3 题目大意 给出\(n\)个点\((x_i,y_i)\),\(m\)次给出\((k_i,a_i ...

  7. BZOJ 3672 [Noi2014]购票 (熟练剖分+凸壳维护)

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3672 题意:给出一棵有根树(1为根),边有长度.每个点u有三个属性(len[u], ...

  8. bzoj 3165: [Heoi2013]Segment 动态凸壳

    3165: [Heoi2013]Segment Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 202  Solved: 89[Submit][Stat ...

  9. [CF1137E]Train Car Selection[维护凸壳]

    题意 题目链接 分析 首先,如果加到了车头所有之前的车厢都不可能成为答案. 如果加到了车尾,容易发现对于 \(x_2<x_3\) 而言在某个时刻会出现 2 又比 3 优的情况. 具体来讲,如果存 ...

随机推荐

  1. 123apps-免费网络应用

    前言 在Jianrry`s博客看见推荐这个网址,试用了一下感觉还不错.主要是完全免费!!就当备用吧 网站介绍 123apps 网站地址:https://123apps.com/cn/ 旗下网站: PD ...

  2. Java 发送 Http请求工具类

    HttpClient.java package util; import java.io.BufferedReader; import java.io.IOException; import java ...

  3. Python读取图片,并保存为矩阵

    from scipy.misc import imread,imshow img = imread('D:test.bmp') print img[:,:,2].shape imshow() 注意im ...

  4. BZOJ2118: 墨墨的等式(最短路 数论)

    题意 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. So ...

  5. 关于html标签的两种隐藏方式

    做一个文章管理模块 有一个功能是需要根据文章分类来显示内容的标签 刚开始以为很简单 ,手放键盘上就是一顿敲. 如果类型是文章就是没问题  可是另外几种就有问题了 红框的标签一直不出来 后来找了半天然来 ...

  6. python 写 组合两两组合

    紧挨着 组合  a b c d  ----> ab ,bc ,cd portList = ['a', 'b', 'c', 'd'] for i, p in enumerate(portList) ...

  7. JavaScript算数

    常数                              Math.E 圆周率                           Math.PI 2的平方根                  ...

  8. Volatile小结

    1)Java 中能创建 Volatile 数组吗? 能,Java 中可以创建 volatile 类型数组,不过只是一个指向数组的引用,而不是整个数组.我的意思是,如果改变引用指向的数组,将会受到 vo ...

  9. devicemaps_init(mdesc)

    devicemaps_init的参数为machine_desc结构体.以s3c6410为例,在arch/arm/mach-s3c64xx/mach-smdk6410.c中使用上述宏声明machine_ ...

  10. Roads in the North POJ - 2631

    Roads in the North POJ - 2631 Building and maintaining roads among communities in the far North is a ...