TensorFlow——Checkpoint为模型添加检查点
1.检查点
保存模型并不限于在训练模型后,在训练模型之中也需要保存,因为TensorFlow训练模型时难免会出现中断的情况,我们自然希望能够将训练得到的参数保存下来,否则下次又要重新训练。
这种在训练中保存模型,习惯上称之为保存检查点。
2.添加保存点
通过添加检查点,可以生成载入检查点文件,并能够指定生成检查文件的个数,例如使用saver的另一个参数——max_to_keep=1,表明最多只保存一个检查点文件,在保存时使用如下的代码传入迭代次数。
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import os train_x = np.linspace(-5, 3, 50)
train_y = train_x * 5 + 10 + np.random.random(50) * 10 - 5 plt.plot(train_x, train_y, 'r.')
plt.grid(True)
plt.show() tf.reset_default_graph() X = tf.placeholder(dtype=tf.float32)
Y = tf.placeholder(dtype=tf.float32) w = tf.Variable(tf.random.truncated_normal([1]), name='Weight')
b = tf.Variable(tf.random.truncated_normal([1]), name='bias') z = tf.multiply(X, w) + b cost = tf.reduce_mean(tf.square(Y - z))
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) init = tf.global_variables_initializer() training_epochs = 20
display_step = 2 saver = tf.train.Saver(max_to_keep=15)
savedir = "model/" if __name__ == '__main__':
with tf.Session() as sess:
sess.run(init)
loss_list = []
for epoch in range(training_epochs):
for (x, y) in zip(train_x, train_y):
sess.run(optimizer, feed_dict={X: x, Y: y}) if epoch % display_step == 0:
loss = sess.run(cost, feed_dict={X: x, Y: y})
loss_list.append(loss)
print('Iter: ', epoch, ' Loss: ', loss) w_, b_ = sess.run([w, b], feed_dict={X: x, Y: y}) saver.save(sess, savedir + "linear.cpkt", global_step=epoch) print(" Finished ")
print("W: ", w_, " b: ", b_, " loss: ", loss)
plt.plot(train_x, train_x * w_ + b_, 'g-', train_x, train_y, 'r.')
plt.grid(True)
plt.show() load_epoch = 10 with tf.Session() as sess2:
sess2.run(tf.global_variables_initializer())
saver.restore(sess2, savedir + "linear.cpkt-" + str(load_epoch))
print(sess2.run([w, b], feed_dict={X: train_x, Y: train_y}))
在上述的代码中,我们使用saver.save(sess, savedir + "linear.cpkt", global_step=epoch)将训练的参数传入检查点进行保存,saver = tf.train.Saver(max_to_keep=1)表示只保存一个文件,这样在训练过程中得到的新的模型就会覆盖以前的模型。
cpkt = tf.train.get_checkpoint_state(savedir)
if cpkt and cpkt.model_checkpoint_path:
saver.restore(sess2, cpkt.model_checkpoint_path) kpt = tf.train.latest_checkpoint(savedir)
saver.restore(sess2, kpt)
上述的两种方法也可以对checkpoint文件进行加载,tf.train.latest_checkpoint(savedir)为加载最后的检查点文件。这种方式,我们可以通过保存指定训练次数的检查点,比如保存5的倍数次保存一下检查点。
3.简便保存检查点
我们还可以用更加简单的方法进行检查点的保存,tf.train.MonitoredTrainingSession()函数,该函数可以直接实现保存载入检查点模型的文件,与前面的方法不同的是,它是按照训练时间来保存检查点的,可以通过指定save_checkpoint_secs参数的具体秒数,设置多久保存一次检查点。
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import os train_x = np.linspace(-5, 3, 50)
train_y = train_x * 5 + 10 + np.random.random(50) * 10 - 5 # plt.plot(train_x, train_y, 'r.')
# plt.grid(True)
# plt.show() tf.reset_default_graph() X = tf.placeholder(dtype=tf.float32)
Y = tf.placeholder(dtype=tf.float32) w = tf.Variable(tf.random.truncated_normal([1]), name='Weight')
b = tf.Variable(tf.random.truncated_normal([1]), name='bias') z = tf.multiply(X, w) + b cost = tf.reduce_mean(tf.square(Y - z))
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) init = tf.global_variables_initializer() training_epochs = 30
display_step = 2 global_step = tf.train.get_or_create_global_step() step = tf.assign_add(global_step, 1) saver = tf.train.Saver() savedir = "check-point/" if __name__ == '__main__':
with tf.train.MonitoredTrainingSession(checkpoint_dir=savedir + 'linear.cpkt', save_checkpoint_secs=5) as sess:
sess.run(init)
loss_list = []
for epoch in range(training_epochs):
sess.run(global_step)
for (x, y) in zip(train_x, train_y):
sess.run(optimizer, feed_dict={X: x, Y: y}) if epoch % display_step == 0:
loss = sess.run(cost, feed_dict={X: x, Y: y})
loss_list.append(loss)
print('Iter: ', epoch, ' Loss: ', loss) w_, b_ = sess.run([w, b], feed_dict={X: x, Y: y})
sess.run(step) print(" Finished ")
print("W: ", w_, " b: ", b_, " loss: ", loss)
plt.plot(train_x, train_x * w_ + b_, 'g-', train_x, train_y, 'r.')
plt.grid(True)
plt.show() load_epoch = 10 with tf.Session() as sess2:
sess2.run(tf.global_variables_initializer()) # saver.restore(sess2, savedir + 'linear.cpkt-' + str(load_epoch)) # cpkt = tf.train.get_checkpoint_state(savedir)
# if cpkt and cpkt.model_checkpoint_path:
# saver.restore(sess2, cpkt.model_checkpoint_path)
#
kpt = tf.train.latest_checkpoint(savedir + 'linear.cpkt') saver.restore(sess2, kpt) print(sess2.run([w, b], feed_dict={X: train_x, Y: train_y}))
上述的代码中,我们设置了没训练了5秒中之后,就保存一次检查点,它默认的保存时间间隔是10分钟,这种按照时间的保存模式更适合使用大型数据集训练复杂模型的情况,注意在使用上述的方法时,要定义global_step变量,在训练完一个批次或者一个样本之后,要将其进行加1的操作,否则将会报错。
TensorFlow——Checkpoint为模型添加检查点的更多相关文章
- Tensorflow滑动平均模型tf.train.ExponentialMovingAverage解析
觉得有用的话,欢迎一起讨论相互学习~Follow Me 移动平均法相关知识 移动平均法又称滑动平均法.滑动平均模型法(Moving average,MA) 什么是移动平均法 移动平均法是用一组最近的实 ...
- ASP.NET MVC 5 - 给电影表和模型添加新字段
在本节中,您将使用Entity Framework Code First来实现模型类上的操作.从而使得这些操作和变更,可以应用到数据库中. 默认情况下,就像您在之前的教程中所作的那样,使用 Entit ...
- Asp.Net MVC4入门指南(7):给电影表和模型添加新字段
在本节中,您将使用Entity Framework Code First来实现模型类上的操作.从而使得这些操作和变更,可以应用到数据库中. 默认情况下,就像您在之前的教程中所作的那样,使用 Entit ...
- FaceRank-人脸打分基于 TensorFlow 的 CNN 模型
FaceRank-人脸打分基于 TensorFlow 的 CNN 模型 隐私 因为隐私问题,训练图片集并不提供,稍微可能会放一些卡通图片. 数据集 130张 128*128 张网络图片,图片名: 1- ...
- 在badboy中添加检查点并且参数化
在badboy中添加检查点(使用百度搜索来举例): 1.打开badboy,在输入框中输入www.baidu.com,单击键盘回车键或者点击输入框右边的按钮进入百度页面: 2.在百度搜索框中输入搜索字, ...
- PowerShell工作流学习-6-向脚本工作流添加检查点
关键点: a)检查点是工作流当前状态的快照,其中包括变量的当前值以及在该点生成的任何输出,这些信息保存在磁盘. b)检查点数据保存在托管工作流会话的计算机的硬盘上的用户配置文件中. c)当工作流通用参 ...
- tensorflow初次接触记录,我用python写的tensorflow第一个模型
tensorflow初次接触记录,我用python写的tensorflow第一个模型 刚用python写的tensorflow机器学习代码,训练60000张手写文字图片,多层神经网络学习拟合17000 ...
- [转]ASP.NET MVC 5 - 给电影表和模型添加新字段
在本节中,您将使用Entity Framework Code First来实现模型类上的操作.从而使得这些操作和变更,可以应用到数据库中. 默认情况下,就像您在之前的教程中所作的那样,使用 Entit ...
- tensorflow笔记:模型的保存与训练过程可视化
tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 ...
随机推荐
- python之随机数random模块
random模块:用于生成随机数 import random #random模块:用于生成随机数 li = [] for i in range(7): r = random.randrange(0,3 ...
- Android 简历+面试题 汇总
1.教你写简历 1.1.你真的会写简历吗? 1.2.80%以上简历都是不合格的 1.3.推荐两个技术简历模板 1.4.关于程序员求职简历 1.5.程序员简历模板列表 2.面试题 2.1.国内一线互联网 ...
- hive操作语句
设置属性: //设置本地执行作set hive.exec.mode.local.auto=true; //设置动态分区 set hive.exec.dynamic.partition=true; se ...
- “帮你APP”团队冲刺2
1.整个项目预期的任务量 (任务量 = 所有工作的预期时间)和 目前已经花的时间 (所有记录的 ‘已经花费的时间’),还剩余的时间(所有工作的 ‘剩余时间’) : 所有工作的预期时间:88h 目前已经 ...
- windows控制台主题美化工具-colortool
最近在win10上装了 wsl 系统,发现界面主题太挫,文件夹颜色很不清晰 . 特此在网上搜索了一下,发现了 colortool 这个工具 这是微软官方提供的用于控制台配色的程序 发布版本地址:htt ...
- leetcode 【 Rotate Image 】python 实现
题目: You are given an n x n 2D matrix representing an image. Rotate the image by 90 degrees (clockwis ...
- IOS笔记044-通知和代理(观察者模式和代理模式)
处理文本输入框的输入事件,单击文本输入框后要弹出键盘. 弹出键盘有两种实现方式:一种代理,一种通知.也就是对应的(观察者模式和代理模式). 1.通知 1.1.准备工作 每一个应用程序都有一个通 ...
- 【LoadRunner】对摘要认证的处理
近期项目中,进行http协议的接口性能测试过程中,需要进行登录接口的摘要认证,分享一下测试经验. 测试准备 测试工具:LoadRunner11 测试类型:接口测试--某系统登录接口 步骤 根据系统接口 ...
- Mac OS使用brew安装memcached
1.查看安装信息 brew info memcached 显示如下: memcached: stable 1.5.9 (bottled) High performance, distributed m ...
- 理解机器为什么可以学习(五)---Noise and Error
之前我们讨论了VC Dimension,最终得到结论,如果我们的hypetheset的VC Dimension是有限的,并且有足够的资料,演算法能够找到一个hypethesis,它的Ein很低的话,那 ...