1.检查点

保存模型并不限于在训练模型后,在训练模型之中也需要保存,因为TensorFlow训练模型时难免会出现中断的情况,我们自然希望能够将训练得到的参数保存下来,否则下次又要重新训练。

这种在训练中保存模型,习惯上称之为保存检查点。

2.添加保存点

通过添加检查点,可以生成载入检查点文件,并能够指定生成检查文件的个数,例如使用saver的另一个参数——max_to_keep=1,表明最多只保存一个检查点文件,在保存时使用如下的代码传入迭代次数。

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import os train_x = np.linspace(-5, 3, 50)
train_y = train_x * 5 + 10 + np.random.random(50) * 10 - 5 plt.plot(train_x, train_y, 'r.')
plt.grid(True)
plt.show() tf.reset_default_graph() X = tf.placeholder(dtype=tf.float32)
Y = tf.placeholder(dtype=tf.float32) w = tf.Variable(tf.random.truncated_normal([1]), name='Weight')
b = tf.Variable(tf.random.truncated_normal([1]), name='bias') z = tf.multiply(X, w) + b cost = tf.reduce_mean(tf.square(Y - z))
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) init = tf.global_variables_initializer() training_epochs = 20
display_step = 2 saver = tf.train.Saver(max_to_keep=15)
savedir = "model/" if __name__ == '__main__':
with tf.Session() as sess:
sess.run(init)
loss_list = []
for epoch in range(training_epochs):
for (x, y) in zip(train_x, train_y):
sess.run(optimizer, feed_dict={X: x, Y: y}) if epoch % display_step == 0:
loss = sess.run(cost, feed_dict={X: x, Y: y})
loss_list.append(loss)
print('Iter: ', epoch, ' Loss: ', loss) w_, b_ = sess.run([w, b], feed_dict={X: x, Y: y}) saver.save(sess, savedir + "linear.cpkt", global_step=epoch) print(" Finished ")
print("W: ", w_, " b: ", b_, " loss: ", loss)
plt.plot(train_x, train_x * w_ + b_, 'g-', train_x, train_y, 'r.')
plt.grid(True)
plt.show() load_epoch = 10 with tf.Session() as sess2:
sess2.run(tf.global_variables_initializer())
saver.restore(sess2, savedir + "linear.cpkt-" + str(load_epoch))
print(sess2.run([w, b], feed_dict={X: train_x, Y: train_y}))

在上述的代码中,我们使用saver.save(sess, savedir + "linear.cpkt", global_step=epoch)将训练的参数传入检查点进行保存,saver = tf.train.Saver(max_to_keep=1)表示只保存一个文件,这样在训练过程中得到的新的模型就会覆盖以前的模型。

cpkt = tf.train.get_checkpoint_state(savedir)
if cpkt and cpkt.model_checkpoint_path:
  saver.restore(sess2, cpkt.model_checkpoint_path) kpt = tf.train.latest_checkpoint(savedir)
saver.restore(sess2, kpt)

上述的两种方法也可以对checkpoint文件进行加载,tf.train.latest_checkpoint(savedir)为加载最后的检查点文件。这种方式,我们可以通过保存指定训练次数的检查点,比如保存5的倍数次保存一下检查点。

3.简便保存检查点

我们还可以用更加简单的方法进行检查点的保存,tf.train.MonitoredTrainingSession()函数,该函数可以直接实现保存载入检查点模型的文件,与前面的方法不同的是,它是按照训练时间来保存检查点的,可以通过指定save_checkpoint_secs参数的具体秒数,设置多久保存一次检查点。

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import os train_x = np.linspace(-5, 3, 50)
train_y = train_x * 5 + 10 + np.random.random(50) * 10 - 5 # plt.plot(train_x, train_y, 'r.')
# plt.grid(True)
# plt.show() tf.reset_default_graph() X = tf.placeholder(dtype=tf.float32)
Y = tf.placeholder(dtype=tf.float32) w = tf.Variable(tf.random.truncated_normal([1]), name='Weight')
b = tf.Variable(tf.random.truncated_normal([1]), name='bias') z = tf.multiply(X, w) + b cost = tf.reduce_mean(tf.square(Y - z))
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) init = tf.global_variables_initializer() training_epochs = 30
display_step = 2 global_step = tf.train.get_or_create_global_step() step = tf.assign_add(global_step, 1) saver = tf.train.Saver() savedir = "check-point/" if __name__ == '__main__':
with tf.train.MonitoredTrainingSession(checkpoint_dir=savedir + 'linear.cpkt', save_checkpoint_secs=5) as sess:
sess.run(init)
loss_list = []
for epoch in range(training_epochs):
sess.run(global_step)
for (x, y) in zip(train_x, train_y):
sess.run(optimizer, feed_dict={X: x, Y: y}) if epoch % display_step == 0:
loss = sess.run(cost, feed_dict={X: x, Y: y})
loss_list.append(loss)
print('Iter: ', epoch, ' Loss: ', loss) w_, b_ = sess.run([w, b], feed_dict={X: x, Y: y})
sess.run(step) print(" Finished ")
print("W: ", w_, " b: ", b_, " loss: ", loss)
plt.plot(train_x, train_x * w_ + b_, 'g-', train_x, train_y, 'r.')
plt.grid(True)
plt.show() load_epoch = 10 with tf.Session() as sess2:
sess2.run(tf.global_variables_initializer()) # saver.restore(sess2, savedir + 'linear.cpkt-' + str(load_epoch)) # cpkt = tf.train.get_checkpoint_state(savedir)
# if cpkt and cpkt.model_checkpoint_path:
# saver.restore(sess2, cpkt.model_checkpoint_path)
#
kpt = tf.train.latest_checkpoint(savedir + 'linear.cpkt') saver.restore(sess2, kpt) print(sess2.run([w, b], feed_dict={X: train_x, Y: train_y}))

上述的代码中,我们设置了没训练了5秒中之后,就保存一次检查点,它默认的保存时间间隔是10分钟,这种按照时间的保存模式更适合使用大型数据集训练复杂模型的情况,注意在使用上述的方法时,要定义global_step变量,在训练完一个批次或者一个样本之后,要将其进行加1的操作,否则将会报错。

TensorFlow——Checkpoint为模型添加检查点的更多相关文章

  1. Tensorflow滑动平均模型tf.train.ExponentialMovingAverage解析

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 移动平均法相关知识 移动平均法又称滑动平均法.滑动平均模型法(Moving average,MA) 什么是移动平均法 移动平均法是用一组最近的实 ...

  2. ASP.NET MVC 5 - 给电影表和模型添加新字段

    在本节中,您将使用Entity Framework Code First来实现模型类上的操作.从而使得这些操作和变更,可以应用到数据库中. 默认情况下,就像您在之前的教程中所作的那样,使用 Entit ...

  3. Asp.Net MVC4入门指南(7):给电影表和模型添加新字段

    在本节中,您将使用Entity Framework Code First来实现模型类上的操作.从而使得这些操作和变更,可以应用到数据库中. 默认情况下,就像您在之前的教程中所作的那样,使用 Entit ...

  4. FaceRank-人脸打分基于 TensorFlow 的 CNN 模型

    FaceRank-人脸打分基于 TensorFlow 的 CNN 模型 隐私 因为隐私问题,训练图片集并不提供,稍微可能会放一些卡通图片. 数据集 130张 128*128 张网络图片,图片名: 1- ...

  5. 在badboy中添加检查点并且参数化

    在badboy中添加检查点(使用百度搜索来举例): 1.打开badboy,在输入框中输入www.baidu.com,单击键盘回车键或者点击输入框右边的按钮进入百度页面: 2.在百度搜索框中输入搜索字, ...

  6. PowerShell工作流学习-6-向脚本工作流添加检查点

    关键点: a)检查点是工作流当前状态的快照,其中包括变量的当前值以及在该点生成的任何输出,这些信息保存在磁盘. b)检查点数据保存在托管工作流会话的计算机的硬盘上的用户配置文件中. c)当工作流通用参 ...

  7. tensorflow初次接触记录,我用python写的tensorflow第一个模型

    tensorflow初次接触记录,我用python写的tensorflow第一个模型 刚用python写的tensorflow机器学习代码,训练60000张手写文字图片,多层神经网络学习拟合17000 ...

  8. [转]ASP.NET MVC 5 - 给电影表和模型添加新字段

    在本节中,您将使用Entity Framework Code First来实现模型类上的操作.从而使得这些操作和变更,可以应用到数据库中. 默认情况下,就像您在之前的教程中所作的那样,使用 Entit ...

  9. tensorflow笔记:模型的保存与训练过程可视化

    tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 ...

随机推荐

  1. 笔记-python-tutorial-5.data structure

    笔记-python-tutorial-5.data structure 1.      data structure 1.1.    list operation list.append(x) #尾部 ...

  2. 菜鸟学Linux - 设置文件/文件夹的权限

    在Linux中,我们可以对文件或文件夹设置权限(r,w,x,-).然而,对文件和文件夹的权限设置,具有不同的意义.下面,通过几个例子来了解一下权限的意义所在.在开始之前,我们需要了解几个修改权限的命令 ...

  3. IOS开发学习笔记005-数组

    数组 数组故名思议就是一组数据的集合. int a[10];//可以存储10个整数 char  c[8];//可以存储8个字符‘ 一般格式:数组类型 数组名[元素个数]: 数组元素的访问:下标,a[2 ...

  4. Python-S9——Day109-Git及Redis

    1.初识Git: 2.Git版本控制之stash和branch: 1.初识Git: 1.1 Git是什么? Git是一个用于帮助用户实现“版本控制”的软件: 1.2 Git安装: GIt官网:http ...

  5. copy & deepcopy

    1 import copy 2 3 字典参照列表结论,看是否有深层嵌套. 4 a = {'name':1,'age':2} 5 b = a 6 a['name'] = 'ff' 7 print(a) ...

  6. PostgreSQL drop database 显示会话没有关闭 [已解决]

    错误重现 有时候需要删除某个数据库时,会报如下错误,显示有一个连接正在使用数据库,无法删除 ERROR: database "pilot" is being accessed by ...

  7. CentOS7 'Username' is not in the sudoers file. This incident will be reported

    新装的 CentOS 需要安装许多软件,但是如果一开始你不是以 root 登入的话,就需要使用 sudo 进行切换,但是通常会报错如下图: 解决方法: 先用 root 用户登入系统, 打开文件 vi ...

  8. Python 拓展之推导式

    写在之前 推导式是从一个或多个迭代器快速简洁的创建数据结构的一种办法,它可以将循环和条件判断结合,从而可以避免语法冗长的代码. 列表推导式 我在之前的文章中(零基础学习 Python 之 for 循环 ...

  9. manjaro安装anaconda出错

    出错信息: ==> Creating package "anaconda"...  -> Generating .PKGINFO file...  -> Gene ...

  10. vs编译生成之后报错

    严重性 代码 说明 项目 文件行 禁止显示状态 错误 CS2001 Source file 'D:\Local\Apright_LW-Wiseb2b\Feekong.Model\obj\Release ...