描述


这一次我们就简单一点了,题目在此:

在直角坐标系中有一条抛物线y=ax^2+bx+c和一个点P(x,y),求点P到抛物线的最短距离d。

输入


第1行:5个整数a,b,c,x,y。前三个数构成抛物线的参数,后两个数x,y表示P点坐标。-200≤a,b,c,x,y≤200

输出

第1行:1个实数d,保留3位小数(四舍五入)

样例输入

2 8 2 -2 6

样例输出

2.437

题解

抛物线和点之间的距离可以简单的用直线公式计算:

\(d = min{sqrt((X - x)^2+(aX^2+bX+c-y)^2)}\)

直接看这个公式,完全不知道它是否为凸函数。

可以考虑选择抛物线极值点\((-\frac{b}{2a},\frac{4ac-b^2}{4a})\)

这个点将这个抛物线分成两个单调曲线,这两个曲线与某个固定点的距离函数是凸函数。

即用三分解决

#include <bits/stdc++.h>
#define ll long long
#define inf 1000000000
#define PI acos(-1)
#define bug puts("here")
#define REP(i,x,n) for(int i=x;i<=n;i++)
#define DEP(i,n,x) for(int i=n;i>=x;i--)
#define mem(a,x) memset(a,x,sizeof(a))
using namespace std;
inline int read(){
int x=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
const double eps=1e-6;
int a,b,c,x,y;
double check(double tx){
double ty=a*tx*tx+b*tx+c;
double t=(tx-x)*(tx-x)+(ty-y)*(ty-y);
return sqrt(t);
}
int main(){
// while(1)
{
a=read(),b=read(),c=read(),x=read(),y=read();
double l=-200,r=-b/(2*a),ans;
while(fabs(l-r)>eps){
double h=(r-l)/3;
if(check(l+h)<check(l+2*h)) r=l+2*h;
else l=l+h;
}
ans=check(l);
l=-b/(2*a),r=200;
while(fabs(l-r)>eps){
double h=(r-l)/3;
if(check(l+h)<check(l+2*h)) r=l+2*h;
else l=l+h;
}
ans=min(ans,check(l));
printf("%.3f\n",ans);
}
return 0;
}

【HIHOCODER 1142】 三分·三分求极值的更多相关文章

  1. HihoCoder - 1142 ,三分入门

    先来说说三分的思想: 从三分法的名字中我们可以猜到,三分法是对于需要逼近的区间做三等分: 我们发现lm这个点比rm要低,那么我们要找的最小点一定在[left,rm]之间.如果最低点在[rm,right ...

  2. hihocoder 1142 三分求极值【三分算法 模板应用】

    #1142 : 三分·三分求极值 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax^2+bx+c和一 ...

  3. Hihocoder #1142 : 三分·三分求极值

    1142 : 三分·三分求极值 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax^2+bx+c和一个 ...

  4. hihocoder 1142 三分·三分求极值(三分)

    题目1 : 三分·三分求极值 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax^2+bx+c和一个点 ...

  5. HLJU 1221: 高考签到题 (三分求极值)

    1221: 高考签到题 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 9  Solved: 4 [Submit][id=1221">St ...

  6. hdu 4717(三分求极值)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4717 思路:三分时间求极小值. #include <iostream> #include ...

  7. hihocoder-1142-三分求极值

    Hihocoder-1142 : 三分·三分求极值 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax ...

  8. AtCoder Beginner Contest 130 F Minimum Bounding Box 三分法求极值(WA)

    题意:给n个点的起始坐标以及他们的行走方向,每一单位时间每个点往它的方向移动一单位.问最小能包围所有点的矩形. 解法:看到题目求极值,想了想好像可以用三分法求极值,虽然我也不能证明面积是个单峰函数. ...

  9. hihocoder #1142 : 三分·三分求极值

    时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax^2+bx+c和一个点P(x,y),求点P到抛物线的 ...

随机推荐

  1. pom文件jar包缺失问题

    一般情况,不在中央仓库的jar包,比如自己的版本,要用的话打入maven私服 在eclipse中引入其他项目(包含jar包),类似于放入了私服,删除工程源文件,会导致别的工程引用此jar包失效

  2. 编译安装php容易出现的问题以及解决办法

    http://crybit.com/20-common-php-compilation-errors-and-fix-unix/

  3. jQuery知识点小结

    博主之前学习一段时间后做了点Demo,借此机会发出来分享,其实学jQuery只要简单看看文档即可,但有些细枝末节的东西文档会默认使用者是了解的,所以还是得系统学习系统训练:Talk is cheap, ...

  4. 百度地图API的基本用法

    首先 ,如果想调用百度地图api,你需要获取一个百度地图api的密钥. 申请秘钥的步骤: 1.搜索百度地图: 2.进入后,先登录然后点击申请密钥: 3. 4.申请成功,拥有密钥 有了密钥之后,引入百度 ...

  5. 整合mybatis分页插件及通用接口测试出现问题

    严重: Servlet.service() for servlet [springmvc] in context with path [/mavenprj] threw exception [Requ ...

  6. Kendo MVVM 数据绑定(六) Html

    Kendo MVVM 数据绑定(六) Html Html 绑定可以使用 ViewMod e 的属性来设置 DOM 元素的 innerHTML 属性.如果 ViewModel 的属性的数据类型不是字符串 ...

  7. 访问权限修饰符-static-final-this-super-匿名对象

    1.this关键字的作用     1)调用本类中的属性;     2)调用本类中的构造方法;且只能放首行,且必须留一个构造方法作为出口,即不能递归调用     3)表示当前对象; 2.匿名对象     ...

  8. 织梦ckeditor编辑器 通过修改js去除img标签内的width和height样式

    1. 文件\include\ckeditor\plugins\image\dialogs\image.js 2. 使用工具美化js代码 3. 搜索 setStyle('width', CKEDITOR ...

  9. centos 离线安装 mysql 5.7

    1 . 安装新版mysql前,需将系统自带的mariadb-lib卸载. rpm -qa|grep mariadb mariadb-libs--.el7.centos.x86_64 rpm -e -- ...

  10. PHP 解决同一个IP不同端口号session冲突的问题

    在项目的开发阶段,我们经常会遇到几个站点共用同一个IP用不同端口号区分的形式!但是,这样很容易导致一个问题,session冲突丢失!即两个站点具有相同的session变量,清除session的时候即全 ...