题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4753

0/1分数规划裸题。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define db double
using namespace std;
const int N=;
const db eps=1e-,INF=1e8;
int n,k,s[N],p[N],hd[N],xnt,to[N],nxt[N],siz[N];
db ans,l,r,mid,a[N],dp[N][N];
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='') ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return fx?ret:-ret;
}
void add(int x,int y)
{
to[++xnt]=y;nxt[xnt]=hd[x];hd[x]=xnt;
}
void dfs(int cr)
{
dp[cr][]=a[cr]; siz[cr]=;
for(int j=;j<=k;j++) dp[cr][j]=-INF;
for(int i=hd[cr],v;i;i=nxt[i])
{
dfs(v=to[i]);
for(int j=min(k,siz[cr]+siz[v]);j>=;j--)
for(int l=max(,j-siz[cr]);l<=siz[v]&&l<j;l++)
dp[cr][j]=max(dp[cr][j],dp[v][l]+dp[cr][j-l]);
siz[cr]+=siz[v];
}
}
bool check()
{
for(int i=;i<=n;i++)
a[i]=p[i]-s[i]*mid;
dfs();
return dp[][k]>=;
}
int main()
{
k=rdn()+; n=rdn();
for(int i=,d;i<=n;i++)
{
s[i]=rdn(); p[i]=rdn();
d=rdn(); add(d,i); r+=p[i];
} for(int i=;i<=n;i++) dp[i][]=-INF;
while(r-l>eps)
{
mid=(l+r)/;
if(check()) ans=mid,l=mid+eps;
else r=mid-eps;
}
printf("%.3lf\n",ans);
return ;
}

bzoj 4753 [Jsoi2016]最佳团体——0/1分数规划的更多相关文章

  1. BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划

    BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划 又是一道卡精度卡得我头皮发麻的题-- 题面(--蜜汁改编版) YL大哥是24OI的大哥,有一天,他想要从\(N\)个候选人中选 ...

  2. bzoj 4753: [Jsoi2016]最佳团体【01分数规划+二分+树上背包】

    01分数规划,二分答案然后把判别式变成Σp[i]-Σs[i]*mid>=0,然后树上背包判断,设f[i][j]为在i点子树里选j个的最大收益,随便背包一下就好 最丧病的是神卡常--转移的时候要另 ...

  3. LUOGU P4322 [JSOI2016]最佳团体(0/1分数规划+树形背包)

    传送门 解题思路 一道0/1分数规划+树上背包,两个应该都挺裸的,话说我常数为何如此之大..不吸氧洛谷过不了啊. 代码 #include<iostream> #include<cst ...

  4. BZOJ.4753.[JSOI2016]最佳团体(01分数规划 树形背包DP)

    题目链接 \(Description\) 每个点有费用si与价值pi,要求选一些带根的连通块,总大小为k,使得 \(\frac{∑pi}{∑si}\) 最大 \(Solution\) 01分数规划,然 ...

  5. BZOJ 4753 [Jsoi2016]最佳团体 ——01分数规划 树形DP

    要求比值最大,当然用分数规划. 二分答案,转化为选取一个最大的联通块使得它们的和大于0 然后我们直接DP. 复杂度$O(n^2\log {n})$ #include <map> #incl ...

  6. [Jsoi2016]最佳团体 BZOJ4753 01分数规划+树形背包/dfs序

    分析: 化简一下我们可以发现,suma*ans=sumb,那么我们考虑二分ans,之后做树形背包上做剪枝. 时间复杂度证明,By GXZlegend O(nklogans) 附上代码: #includ ...

  7. bzoj 3232 圈地游戏——0/1分数规划(或网络流)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 当然是0/1分数规划.但加的东西和减的东西不在一起,怎么办? 考虑把它们合在一起.因为 ...

  8. 【BZOJ】4753: [Jsoi2016]最佳团体 01分数规划+树上背包

    [题意]n个人,每个人有价值ai和代价bi和一个依赖对象ri<i,选择 i 时 ri 也必须选择(ri=0时不依赖),求选择k个人使得Σai/Σbi最大.n<=2500,ai,bi< ...

  9. Bzoj1486/洛谷P3199 最小圈(0/1分数规划+spfa)/(动态规划+结论)

    题面 Bzoj 洛谷 题解(0/1分数规划+spfa) 考虑\(0/1\)分数规划,设当前枚举到的答案为\(ans\) 则我们要使(其中\(\forall b_i=1\)) \[ \frac{\sum ...

随机推荐

  1. Java中的线程池ExecutorService

    示例 import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.u ...

  2. 贷前系统ElasticSearch实践总结

    贷前系统负责从进件到放款前所有业务流程的实现,其中涉及一些数据量较大.条件多样且复杂的综合查询,引入ElasticSearch主要是为了提高查询效率,并希望基于ElasticSearch快速实现一个简 ...

  3. Paxos算法学习

    早在1990年,Leslie Lamport(即 LaTeX 中的"La",微软研究院科学家,获得2013年图灵奖)向ACM Transactions on Computer Sy ...

  4. 常用yum命令小结

    基于rpm的软件包管理器 yum,是Yellow dog Updater, Modified的简称,是一种软件包管理器.它能够从指定的服务器自动下载RPM包并安装,可以自动处理依赖性关系,并且一次安装 ...

  5. 一些编译php时的configure 参数

    一些编译php时的configure 参数 ./configure –prefix=/usr/local/php php 安装目录 –with-apxs2=/usr/local/apache/bin/ ...

  6. SQLServer -- SQL Server Database Error: 内部 SQL Server 错误

    报表在SQLserver2008运行统计正常,但是在SQLserver2000运行报错,SQL直接执行报:内部 SQL Server 错误. 不断的排查,最终得到的结论是:SQLserver2000似 ...

  7. webpy使用mysql数据库操作(web.database)

    webpy_web.database模块 webpy框架中使用mysql管理数据库有两种方法,一种是使用python里面的MySQLdb模块: import MySQLdb 还有一种就是用webpy自 ...

  8. Android Thread.UncaughtExceptionHandler异常消息捕获

    public void uncaughtException(Thread thread, Throwable ex) { //处理异常 Log.e("崩溃",thread.getN ...

  9. 继续封装DBDA.php 加入ajax

    <?php class DBDA { public $host = "localhost"; //服务器地址 public $uid = "root"; ...

  10. FPGA学习笔记之Altera FPGA使用JIC文件配置固化教程(转)

    很多做过单片机的朋友都知 道,我们在对MCU烧写完程序固件后,那么该程序固件就存储在了该MCU内部.即使MCU断电了再重新上电,程序也能继续运行.这是因为对MCU烧写固件 的实质就是将程序固件写入到M ...