题目:https://www.luogu.org/problemnew/show/P1072

思路是把每个数质因数分解,答案对于每个质因数的次数有选择的区间,通过这个计算。

指数的限制就是上限是b1,下限是a1;a0-a1后有剩余的自己不能有;b1-b0有剩余的自己不能剩(即必须满上限)。

分解质因数用了那个好像是 O( n^(1/4) ) 的方法。其实如果给的都是大质数是不是会被卡?

然后写了无比冗长的代码。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
int T,a0,a1,b0,b1,p[N],tot,hi[N],lo[N],hi2[N],lo2[N],lm[N],ans;
bool flag=;
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='') ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return fx?ret:-ret;
}
int main()
{
T=rdn();
while(T--)
{
a0=rdn(); a1=rdn(); b0=rdn(); b1=rdn();
int n=b1; tot=;//limit
for(int i=;i*i<=n;i++)
{
if(n%i==)
{
p[++tot]=i;lo[tot]=hi[tot]=lo2[tot]=hi2[tot]=;
while(n%i==)n/=i,hi[tot]++;
hi2[tot]=hi[tot];
}
}
if(n>)
{
p[++tot]=n;lo[tot]=hi[tot]=lo2[tot]=hi2[tot]=;
hi[tot]=hi2[tot]=;
} flag=;
n=a1; int p0=;//bottom
for(int i=;i*i<=n;i++)
if(n%i==)
{
int d=;
while(n%i==)n/=i,d++;
while(p0<tot&&p[p0]<i)p0++;
if(p[p0]!=i){flag=;break;}
lo[p0]=d;
}
if(flag){puts("");continue;}
if(n>)
{
while(p0<tot&&p[p0]<n)p0++;
if(p[p0]==n)
lo[p0]=;
} flag=;
for(int i=;i<=tot;i++)if(hi[i]<lo[i]){flag=;break;}
if(flag){puts("");continue;} n=b0; p0=;
for(int i=;i*i<=n;i++)
{
if(n%i==)
{
int d=;
while(n%i==)n/=i,d++;
while(p0<tot&&p[p0]<i)p0++;
if(p[p0]!=i)continue;
lo2[p0]=d;//can't leave
}
}
if(n>)
{
while(p0<tot&&p[p0]<n)p0++;
if(p[p0]==n) lo2[p0]=;
}
for(int i=;i<=tot;i++)
{
int d=hi[i]-lo2[i];
if(d) lo2[i]=hi[i]; else lo2[i]=;
} n=a0; p0=;
for(int i=;i*i<=n;i++)
{
if(n%i==)
{
int d=;
while(n%i==)n/=i,d++;
while(p0<tot&&p[p0]<i)p0++;
if(p[p0]!=i)continue;
if(d>lo[p0])hi2[p0]=lo[p0];//can't exist
}
}
if(n>)
{
while(p0<tot&&p[p0]<n)p0++;
if(p[p0]==n)
if(>lo[p0])hi2[p0]=lo[p0];
} for(int i=;i<=tot;i++)
hi[i]=min(hi[i],hi2[i]),lo[i]=max(lo[i],lo2[i]);
ans=; flag=;
for(int i=;i<=tot;i++)
{
if(lo[i]>hi[i]){flag=;break;}
ans*=hi[i]-lo[i]+;
}
printf("%d\n",flag?ans:);
}
return ;
}

洛谷 1072 Hankson 的趣味题——质因数界限讨论的更多相关文章

  1. 洛谷 - P1072 Hankson - 的趣味题 - 质因数分解

    https://www.luogu.org/problemnew/show/P1072 一开始看了一看居然还想放弃了的. 把 \(x,a_0,a_1,b_0,b_1\) 质因数分解. 例如 \(x=p ...

  2. 洛谷 P1072 Hankson 的趣味题 —— 质因数分解

    题目:https://www.luogu.org/problemnew/show/P1072 满足条件的数 x 一定是 a1 的倍数,b1 的因数,a0/a1 与 x/a1 互质,b1/b0 与 b1 ...

  3. 洛谷 P1072 Hankson 的趣味题 解题报告

    P1072 \(Hankson\)的趣味题 题目大意:已知有\(n\)组\(a0,a1,b0,b1\),求满足\((x,a0)=a1\),\([x,b0]=b1\)的\(x\)的个数. 数据范围:\( ...

  4. 洛谷P1072 Hankson 的趣味题

    P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一 ...

  5. Java实现洛谷 P1072 Hankson 的趣味题

    P1072 Hankson 的趣味题 输入输出样例 输入 2 41 1 96 288 95 1 37 1776 输出 6 2 PS: 通过辗转相除法的推导 import java.util.*; cl ...

  6. 【题解】洛谷P1072 Hankson的趣味题 (gcd和lcm的应用)

    洛谷P1072:https://www.luogu.org/problemnew/show/P1072 思路 gcd(x,a0)=a1 lcm(x,b0)=b1→b0*x=b1*gcd(x,b0) ( ...

  7. 洛谷 P1072 Hankson 的趣味题 || 打质数表的分解质因数

    方法就是枚举,根据b0和b1可以大大减小枚举范围,方法类似这个http://blog.csdn.net/hehe_54321/article/details/76021615 将b0和b1都分解质因数 ...

  8. 洛谷P1072 Hankson 的趣味题(题解)

    https://www.luogu.org/problemnew/show/P1072(题目传送) 数学的推理在编程的体现越来越明显了.(本人嘀咕) 首先,我们知道这两个等式: (a0,x)=a1,[ ...

  9. 洛谷P1072 Hankson的趣味题

    这是个NOIP原题... 题意: 给定 a b c d 求 gcd(a, x) = b && lcm(c, x) = d 的x的个数. 可以发现一个朴素算法是从b到d枚举,期望得分50 ...

随机推荐

  1. requests(爬虫常用)库的使用

    Requests库的使用 基于urllib改写的库 示例: import requests response=requests.get('http://www.baidu.com')#get请求 pr ...

  2. hdu5373

    题先附上:水题,可是思路不正确,特easy超时(TLE) The shortest problem Time Limit: 3000/1500 MS (Java/Others)    Memory L ...

  3. Odoo HRMS应用简介

    Odoo HRMS包含行政管理的大部分功能,包含 部门组织架构 员工清册 岗位规划以及招聘管理 用工合同 考勤管理 休假和加班 费用报销 员工考核 绩效.激励.培训成绩 薪资清册     个角色 角色 ...

  4. Android最佳实践之Material Design

    Material概述及主题 学习地址:http://developer.android.com/training/material/get-started.html 使用material design ...

  5. sonar + ieda实现提交代码前代码校验

    代码风格不同一直是一件停头疼的事情,因为不同的工作经验,工作经历,每个人的代码风格不尽相同,造成一些代码在后期的维护当中难以维护, 查阅一些资料之后发现 idea + sonar 的方式比较适合我,实 ...

  6. Mysql 基本操作指令+增删查改

    nqinx是web前端服务端 负载均衡(软件)可以将用户请求调度到几台机器的nqinx上去做 ,一般都有两个负载均衡,一个做备用硬件的要比软件的好,但是一般公司都用软件实现数据库软件其实也是一个服务端 ...

  7. Android Studio 那些事|Activity文件前标识图标显示为 j 而是 c

    问题:Activity文件前标识图标显示为 j 而是 c 的图标,或是没有显示,并且自己主动提示不提示 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/fo ...

  8. 韦东山 第9课第1节.u-boot分析之编译体验 http://www.100ask.net/index.html

    http://www.100ask.net/index.html 韦东山官网网址 http://wenku.baidu.com/view/ae78a00390c69ec3d5bb75ce.html h ...

  9. 记使用WaitGroup时的一个错误

    记使用WaitGroup时的一个错误 近期重构我之前写的server代码时,不当使用了WaitGroup,碰到了个错误,记录下. package main import ( "fmt&quo ...

  10. Cena使用

    打开cena,在工具-选项中,修改G++和GCC的编译命令.格式:[g++目录]g++.exe %s.cpp -o %s.exe [编译选项]例如以下命令使用刚安装的mingw4.8.1 g++编译, ...