题目:https://www.luogu.org/problemnew/show/P1072

思路是把每个数质因数分解,答案对于每个质因数的次数有选择的区间,通过这个计算。

指数的限制就是上限是b1,下限是a1;a0-a1后有剩余的自己不能有;b1-b0有剩余的自己不能剩(即必须满上限)。

分解质因数用了那个好像是 O( n^(1/4) ) 的方法。其实如果给的都是大质数是不是会被卡?

然后写了无比冗长的代码。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
int T,a0,a1,b0,b1,p[N],tot,hi[N],lo[N],hi2[N],lo2[N],lm[N],ans;
bool flag=;
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='') ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return fx?ret:-ret;
}
int main()
{
T=rdn();
while(T--)
{
a0=rdn(); a1=rdn(); b0=rdn(); b1=rdn();
int n=b1; tot=;//limit
for(int i=;i*i<=n;i++)
{
if(n%i==)
{
p[++tot]=i;lo[tot]=hi[tot]=lo2[tot]=hi2[tot]=;
while(n%i==)n/=i,hi[tot]++;
hi2[tot]=hi[tot];
}
}
if(n>)
{
p[++tot]=n;lo[tot]=hi[tot]=lo2[tot]=hi2[tot]=;
hi[tot]=hi2[tot]=;
} flag=;
n=a1; int p0=;//bottom
for(int i=;i*i<=n;i++)
if(n%i==)
{
int d=;
while(n%i==)n/=i,d++;
while(p0<tot&&p[p0]<i)p0++;
if(p[p0]!=i){flag=;break;}
lo[p0]=d;
}
if(flag){puts("");continue;}
if(n>)
{
while(p0<tot&&p[p0]<n)p0++;
if(p[p0]==n)
lo[p0]=;
} flag=;
for(int i=;i<=tot;i++)if(hi[i]<lo[i]){flag=;break;}
if(flag){puts("");continue;} n=b0; p0=;
for(int i=;i*i<=n;i++)
{
if(n%i==)
{
int d=;
while(n%i==)n/=i,d++;
while(p0<tot&&p[p0]<i)p0++;
if(p[p0]!=i)continue;
lo2[p0]=d;//can't leave
}
}
if(n>)
{
while(p0<tot&&p[p0]<n)p0++;
if(p[p0]==n) lo2[p0]=;
}
for(int i=;i<=tot;i++)
{
int d=hi[i]-lo2[i];
if(d) lo2[i]=hi[i]; else lo2[i]=;
} n=a0; p0=;
for(int i=;i*i<=n;i++)
{
if(n%i==)
{
int d=;
while(n%i==)n/=i,d++;
while(p0<tot&&p[p0]<i)p0++;
if(p[p0]!=i)continue;
if(d>lo[p0])hi2[p0]=lo[p0];//can't exist
}
}
if(n>)
{
while(p0<tot&&p[p0]<n)p0++;
if(p[p0]==n)
if(>lo[p0])hi2[p0]=lo[p0];
} for(int i=;i<=tot;i++)
hi[i]=min(hi[i],hi2[i]),lo[i]=max(lo[i],lo2[i]);
ans=; flag=;
for(int i=;i<=tot;i++)
{
if(lo[i]>hi[i]){flag=;break;}
ans*=hi[i]-lo[i]+;
}
printf("%d\n",flag?ans:);
}
return ;
}

洛谷 1072 Hankson 的趣味题——质因数界限讨论的更多相关文章

  1. 洛谷 - P1072 Hankson - 的趣味题 - 质因数分解

    https://www.luogu.org/problemnew/show/P1072 一开始看了一看居然还想放弃了的. 把 \(x,a_0,a_1,b_0,b_1\) 质因数分解. 例如 \(x=p ...

  2. 洛谷 P1072 Hankson 的趣味题 —— 质因数分解

    题目:https://www.luogu.org/problemnew/show/P1072 满足条件的数 x 一定是 a1 的倍数,b1 的因数,a0/a1 与 x/a1 互质,b1/b0 与 b1 ...

  3. 洛谷 P1072 Hankson 的趣味题 解题报告

    P1072 \(Hankson\)的趣味题 题目大意:已知有\(n\)组\(a0,a1,b0,b1\),求满足\((x,a0)=a1\),\([x,b0]=b1\)的\(x\)的个数. 数据范围:\( ...

  4. 洛谷P1072 Hankson 的趣味题

    P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一 ...

  5. Java实现洛谷 P1072 Hankson 的趣味题

    P1072 Hankson 的趣味题 输入输出样例 输入 2 41 1 96 288 95 1 37 1776 输出 6 2 PS: 通过辗转相除法的推导 import java.util.*; cl ...

  6. 【题解】洛谷P1072 Hankson的趣味题 (gcd和lcm的应用)

    洛谷P1072:https://www.luogu.org/problemnew/show/P1072 思路 gcd(x,a0)=a1 lcm(x,b0)=b1→b0*x=b1*gcd(x,b0) ( ...

  7. 洛谷 P1072 Hankson 的趣味题 || 打质数表的分解质因数

    方法就是枚举,根据b0和b1可以大大减小枚举范围,方法类似这个http://blog.csdn.net/hehe_54321/article/details/76021615 将b0和b1都分解质因数 ...

  8. 洛谷P1072 Hankson 的趣味题(题解)

    https://www.luogu.org/problemnew/show/P1072(题目传送) 数学的推理在编程的体现越来越明显了.(本人嘀咕) 首先,我们知道这两个等式: (a0,x)=a1,[ ...

  9. 洛谷P1072 Hankson的趣味题

    这是个NOIP原题... 题意: 给定 a b c d 求 gcd(a, x) = b && lcm(c, x) = d 的x的个数. 可以发现一个朴素算法是从b到d枚举,期望得分50 ...

随机推荐

  1. gvim的常用编辑快捷键

    gvim的快捷键很多,很难记全,但是入门初期应该找过几种基本的命令 下面结合自己常用到的介绍下 光标跳转: 0:行首 $:行尾 e:下一个单词的结尾 w:下一个单词的开头 b:上一个单词 H:当前页面 ...

  2. pycharm pull到github

    1.setting中找到github 正确输入邮箱密码,勾上ssh 2.在本机中git bash 得到ssh代码 输入到github 个人setting中 3.在pycharm中setting项git ...

  3. 关于Oracle中sysoper这个系统权限的问题

    我们都知道Oracle数据库安装完之后.默认的会有这样几个系统角色或权限.nomal,sysdba,sysoper等等,之前每次登录Oracle的时候.都是直接以conn / as sysdba 的身 ...

  4. LinearLayout具体解释三:LayoutInflater创建View过程分析

    上次讲到以下这么一段代码,这段代码的作用就是解析xml文件成为view并显示到屏幕上的. @Override //设置contentview,也就是activity或fragment载入视图,即vie ...

  5. Ubuntu 登陆异常-输入正确的密码后还会返回到登陆界面的问题

    问题表现: 启动到了登陆界面,输入对应的密码,发现一闪黑屏有返回到登陆界面,如此往复. 解决方法: 开机后在登陆界面按下shift + ctrl + F1进入tty命令行终端登陆,可以查看用户主目录下 ...

  6. C++算法之 一句话推断一个整数是不是2 的整数次方

    思路:一个整数假设是2的整数次方,那么它的二进制表示中有且仅仅有一位是1,而其它全部位都是0.把这个整数与这个整数减去1之后进行与运算.那么这个整数其中唯一的 1会变为0,这个整数也变为0: 代码: ...

  7. java: private, protected, public

    这三个 「可访问修饰符」,是一个老生常谈的话题了.在 C++ 中也有类似的概念. 按其修饰对象的不同,分为几种用法小记一下: 用于类 只有 public 可以修饰类:private 和 protect ...

  8. lua 字符串处理

    匹配模式(pattern) . 任何单个字符 %a 任何字母 %c 任何控制字符 %d 任何数字 %g 任何除空白符外的可打印字符 %l 所有小写字母 %p 所有标点符号 %s 所有空白字符 %u 所 ...

  9. MySQL-怎样使update操作sleep一段时间

    )) a on mytest.id=a.id set mytest.name='xiaowang';

  10. FFmpeg解码详细流程

    FFmpeg在解码一个视频的时候的函数调用流程.为了保证结构清晰,其中仅列出了最关键的函数,剔除了其它不是特别重要的函数. 下面解释一下图中关键标记的含义. 函数背景色 函数在图中以方框的形式表现出来 ...