jzptab

【问题描述】

求:

多组询问

【输入格式】

一个正整数T表示数据组数

接下来T行 每行两个正整数 表示N、M

【输出格式】

T行 每行一个整数 表示第i组数据的结果

【样例输入】

1
4 5

【样例输出】

122

【数据范围】

T <= 10000
N, M<=10000000


题解:

即后面那个部分为 H[T],H[T]是积性函数,求详细证明的话将T和d展开为质因数次幂相乘的形式,考虑线性筛中枚举的质数与被筛数的性质即可

 #include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn = 1e7 + ;
const int mod = 1e8 + ;
int cnt;
int h[maxn];
int pri[maxn];
int sum[maxn];
bool vis[maxn];
inline void Scan(int &x)
{
char c;
bool o = false;
while(!isdigit(c = getchar())) o = (c != '-') ? o : true;
x = c - '';
while(isdigit(c = getchar())) x = x * + c - '';
if(o) x = -x;
}
inline void Sieve()
{
h[] = ;
for(int i = ; i <= maxn; ++i)
{
if(!vis[i]) pri[++cnt] = i, h[i] = ((-(long long) i * i % mod) + mod + i) % mod;
for(int j = ; j <= cnt; ++j)
{
int s = pri[j];
long long k = (long long) i * s;
if(k > maxn) break;
vis[k] = true;
if(!(i % s))
{
h[k] = (long long) s * h[i] % mod;
break;
}
else h[k] = (long long) h[s] * h[i] % mod;
}
}
for(int i = ; i <= maxn; ++i) sum[i] = (sum[i - ] + h[i]) % mod;
}
inline int Sum(int n, int m)
{
return ((long long) n * (n + ) >> ) % mod * (((long long) m * (m + ) >> ) % mod) % mod;
}
inline int Mobius(int n, int m)
{
int res = , last = ;
if(n > m) swap(n, m);
for(int i = ; i <= n; i = last + )
{
last = min(n / (n / i), m / (m / i));
res = (res + (long long) Sum(n / i, m / i) * ((sum[last] - sum[i - ] + mod) % mod) % mod) % mod;
}
return res;
}
int main()
{
Sieve();
int n;
Scan(n);
int a, b;
while(n--)
{
Scan(a), Scan(b);
printf("%d\n", Mobius(a, b));
}
}

Crash的数字表格 BZOJ 2154 / jzptab BZOJ 2693的更多相关文章

  1. 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)

    BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...

  2. [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)

    题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑N​y=1∑M​lim(x, ...

  3. 【BZOJ】【2154】Crash的数字表格

    莫比乌斯反演 PoPoQQQ讲义第4题 题解:http://www.cnblogs.com/jianglangcaijin/archive/2013/11/27/3446169.html 感觉两次sq ...

  4. [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)

    [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...

  5. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  6. 【BZOJ 2154】Crash的数字表格 (莫比乌斯+分块)

    2154: Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能 ...

  7. Bzoj 2154: Crash的数字表格(积性函数)

    2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MB Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least ...

  8. 2154: Crash的数字表格

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 3372  Solved: 1258[Submit][Status][ ...

  9. 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告

    [国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于 ...

随机推荐

  1. Mac下快捷键的符号所对应的按键

  2. Boo who-freecodecamp算法题目

    Boo who 1.要求 检查一个值是否是基本布尔类型,并返回 true 或 false. 基本布尔类型即 true 和 false 2.思路 利用switch语句判断输入的数据是true/false ...

  3. NOIP模拟赛 czy的后宫

    [题目描述] czy要妥善安排他的后宫,他想在机房摆一群妹子,一共有n个位置排成一排,每个位置可以摆妹子也可以不摆妹子.有些类型妹子如果摆在相邻的位置(隔着一个空的位置不算相邻),就不好看了.假定每种 ...

  4. 洛谷 P1228 【地毯填补问题】

    事实上感觉四个的形状分别是这样: spj报错: 1:c 越界 2:x,y 越界 3:mp[x][y] 已被占用 4:mp[x][y] 从未被使用 题解: 初看这个问题,似乎无从下手,于是我们可以先考虑 ...

  5. Lecture 2

    1. Coordinate(坐标) data for GIS real coordinate system:Cartesian coordinate systems(笛卡尔坐标系) from 3D t ...

  6. python数据类型之元组(tuple)

    元组是python的基础类型之一,是有序的. 元组是不可变的,一旦创建便不能再修改,所以叫只读列表. name = ('alex', 'jack') name[0] = 'mark' # TypeEr ...

  7. NSNotificationCenter的用法

    作用:NSNotificationCenter是专门供程序中不同类间的消息通信而设置的. 注册通知:即要在什么地方接受消息 [[NSNotificationCenter defaultCenter]  ...

  8. re--参考手册

    表达式全集 字符 描述 \ 将下一个字符标记为一个特殊字符.或一个原义字符.或一个向后引用.或一个八进制转义符.例如,“n”匹配字符“n”.“\n”匹配一个换行符.串行“\\”匹配“\”而“\(”则匹 ...

  9. LA 5007 Detector Placement 模拟

    题意: 给出一束光线(射线),和一块三角形的棱镜 以及 棱镜的折射率,问光线能否射到X轴上,射到X轴上的坐标是多少. 分析: 其实直接模拟就好了,注意到题目中说不会发生全反射,所以如果射到棱镜中的话就 ...

  10. javascript常见数据集

    目录 数组 对象 一.数组 创建方法 1 2 3 var arrayObj = new Array(); //创建一个数组             var arrayObj = new Array([ ...