GCD

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5310    Accepted Submission(s): 1907

Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.

 
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
 
Output
For each test case, print the number of choices. Use the format in the example.
 
Sample Input
2
1 3 1 5 1
1 11014 1 14409 9
 
Sample Output
Case 1: 9
Case 2: 736427

Hint

For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).

 
Source
 
题目大意:求在1<=x<=b,1<=y<=d上gcd(x,y)=k的(x,y)对数
 /************容斥原理*************/
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std; typedef __int64 LL;
const int maxn=1e5+;
int phi[maxn],prime[maxn],factor[],num;
bool flag[maxn];
void swap(int &a,int &b){ int t=a;a=b;b=t;} void init()//欧拉筛选
{
memset(flag,true,sizeof(flag));
phi[]=;
for(int i=;i<maxn;i++)
{
if(flag[i])
{
prime[num++]=i;
phi[i]=i-;
}
for(int j=;j<num&&i*prime[j]<maxn;j++)
{
flag[i*prime[j]]=false;
if(i%prime[j]==)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
} void getfactor(int n,int &len)//质因数分解
{
int t=sqrt(n*1.0);len=;
for(int i=;i<num&&prime[i]<=t;i++)
{
if(n%prime[i]==)
{
factor[len++]=prime[i];
while(n%prime[i]==) n/=prime[i];
}
}
if(n>) factor[len++]=n;
} int getans(int a,int b)
{
int n;
int ans=;
getfactor(b,n);
for(int i=;i<(<<n);i++)//容斥原理
{
int cnt=,temp=;
for(int j=;j<n;j++)
{
if(i&(<<j))
{
cnt++;temp*=factor[j];
}
}
if(cnt&) ans+=a/temp;
else ans-=a/temp;
}
return a-ans;
} int main()
{
int i,a,b,c,d,k,t,icase=;
LL ans;num=;
init();
scanf("%d",&t);
while(t--)
{
scanf("%d %d %d %d %d",&a,&b,&c,&d,&k);
if(k==||k>b||k>d)
{
printf("Case %d: 0\n",++icase);
continue;
}
ans=;
b/=k;d/=k;
if(b>d) swap(b,d);
for(i=;i<=b;i++) ans+=phi[i];
for(i=b+;i<=d;i++) ans+=getans(b,i);
printf("Case %d: %I64d\n",++icase,ans);
}
return ;
}
/*************莫比乌斯反演****************/
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std; typedef __int64 LL;
const int maxn=1e5+;
int prime[maxn],mu[maxn],num;
bool flag[maxn]; void init()
{
memset(flag,true,sizeof(flag));
mu[]=;
for(int i=;i<maxn;i++)
{
if(flag[i])
{
prime[num++]=i;mu[i]=-;
}
for(int j=;j<num&&i*prime[j]<maxn;j++)
{
flag[i*prime[j]]=false;
if(i%prime[j]==)
{
mu[i*prime[j]]=;
break;
}
else mu[i*prime[j]]=-mu[i];
}
}
} int main()
{
num=;
init();
int i,a,b,c,d,k,t,icase=;
scanf("%d",&t);
while(t--)
{
scanf("%d %d %d %d %d",&a,&b,&c,&d,&k);
if(k==||k>b||k>d)
{
printf("Case %d: 0\n",++icase);
continue;
}
b=b/k;d=d/k;
if(b>d) swap(b,d);
LL ans=,ans1=;
for(i=;i<=b;i++)
ans+=(LL)mu[i]*(b/i)*(d/i);
for(i=;i<=b;i++)
ans1+=(LL)mu[i]*(b/i)*(b/i);
ans-=ans1/;
printf("Case %d: %I64d\n",++icase,ans);
}
return ;
}

hdu 1695 容斥原理或莫比乌斯反演的更多相关文章

  1. HDU 1695 GCD (莫比乌斯反演)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  2. HDU 1695 GCD (莫比乌斯反演模板)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  3. hdu 1695: GCD 【莫比乌斯反演】

    题目链接 这题求[1,n],[1,m]gcd为k的对数.而且没有顺序. 设F(n)为公约数为n的组数个数 f(n)为最大公约数为n的组数个数 然后在纸上手动验一下F(n)和f(n)的关系,直接套公式就 ...

  4. hdu 1695 GCD(莫比乌斯反演)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. HDU 5321 Beautiful Set (莫比乌斯反演 + 逆元 + 组合数学)

    题意:给定一个 n 个数的集合,然后让你求两个值, 1.是将这个集合的数进行全排列后的每个区间的gcd之和. 2.是求这个集合的所有的子集的gcd乘以子集大小的和. 析:对于先求出len,len[i] ...

  6. 【容斥原理,莫比乌斯反演】用容斥替代莫比乌斯反演第二种形式解决gcd统计问题

    名字虽然很长.但是其实很简单,对于这一类问题基本上就是看你能不能把统计的公式搞出来(这时候需要一个会推公式的队友) 来源于某次cf的一道题,盼望上紫的我让潘学姐帮我代打一道题,她看了看跟我说了题解,用 ...

  7. HDU 4746 Mophues【莫比乌斯反演】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4746 题意: 1≤x,y≤n , 求gcd(x,y)分解后质因数个数小于等k的(x,y)的对数. 分 ...

  8. HDU 5468 Puzzled Elena 莫比乌斯反演

    题意: 给出一棵树,每个点上有权值.然后求每棵子树中与根节点互质( \(gcd(a, b) = 1\) )的节点个数. 分析: 对于一颗子树来说,设根节点的权值为\(u\), \(count_i\)表 ...

  9. GCD HDU - 1695 容斥原理(复杂度低的版本)

    题意: 让你从区间[a,b]里面找一个数x,在区间[c,d]里面找一个数y.题目上已经设定a=b=1了.问你能找到多少对GCD(x,y)=k.x=5,y=7和y=5,x=7是同一对 题解: 弄了半天才 ...

随机推荐

  1. C++链表简单的应用

    学生管理系统,输入学生的姓名和学号,然后再输出: #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include <stdlib ...

  2. odoo前端

    bootstrap: http://www.runoob.com/bootstrap/bootstrap-tutorial.html javascript: http://www.runoob.com ...

  3. STL容器之Array[转]

    转自https://blog.csdn.net/sin_geek/article/details/51067874 作者 Sin_Geek 简介 array在头文件<array> 中定义 ...

  4. CF-1114 (2019/02/11)

    CF-1114 A. Got Any Grapes? skip B. Yet Another Array Partitioning Task 将n个数分成连续的k组,使得每组的前m大的数字的总和最大. ...

  5. python入门:模拟简单用户登录(自写)

    #!/usr/bin/env python # -*- coding: utf-8 -*- #模拟简单用户登录(自写) import getpass a = raw_input("Pleas ...

  6. Linux网络配置指令

    版权声明:本文为博主原创文章,未经博主允许不得转载. 原文地址: https://www.cnblogs.com/poterliu/p/6686799.html 重启网卡service network ...

  7. mybatis枚举类型处理器

    1. 定义枚举值的接口 public abstract interface ValuedEnum { int getValue(); } 所有要被mybatis处理的枚举类继承该接口 2. 定义枚举类 ...

  8. 【mysql】mysql has gone away

    原文 http://www.jb51.net/article/23781.htm MySQL server has gone away 问题的解决方法 投稿:mdxy-dxy 字体:[增加 减小] 类 ...

  9. 优酷项目之 ORM(数据库对象关系映射)代码重写

    前言: 我们在操作数据库时候一般都是通过sql代码来操作mysql数据库中相关数据,这就需要懂得sql语句,那么怎么样才能在不懂sql语句的情况下通过我们所学的python代码来实现对mysql数据库 ...

  10. python-数据类型总结 (面试常问)

    目录 数字类型总结 拷贝 浅拷贝 深拷贝 数字类型总结 一个值 多个值 整型/浮点型/字符串 列表/字典/元祖/集合 有序 无序 字符串/列表/元祖 字典/集合 可变 不可变 列表/字典/集合 整型/ ...