hdu 1695 容斥原理或莫比乌斯反演
GCD
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5310 Accepted Submission(s): 1907
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
Yoiu can assume that a = c = 1 in all test cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
1 3 1 5 1
1 11014 1 14409 9
Case 2: 736427
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
/************容斥原理*************/
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std; typedef __int64 LL;
const int maxn=1e5+;
int phi[maxn],prime[maxn],factor[],num;
bool flag[maxn];
void swap(int &a,int &b){ int t=a;a=b;b=t;} void init()//欧拉筛选
{
memset(flag,true,sizeof(flag));
phi[]=;
for(int i=;i<maxn;i++)
{
if(flag[i])
{
prime[num++]=i;
phi[i]=i-;
}
for(int j=;j<num&&i*prime[j]<maxn;j++)
{
flag[i*prime[j]]=false;
if(i%prime[j]==)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
} void getfactor(int n,int &len)//质因数分解
{
int t=sqrt(n*1.0);len=;
for(int i=;i<num&&prime[i]<=t;i++)
{
if(n%prime[i]==)
{
factor[len++]=prime[i];
while(n%prime[i]==) n/=prime[i];
}
}
if(n>) factor[len++]=n;
} int getans(int a,int b)
{
int n;
int ans=;
getfactor(b,n);
for(int i=;i<(<<n);i++)//容斥原理
{
int cnt=,temp=;
for(int j=;j<n;j++)
{
if(i&(<<j))
{
cnt++;temp*=factor[j];
}
}
if(cnt&) ans+=a/temp;
else ans-=a/temp;
}
return a-ans;
} int main()
{
int i,a,b,c,d,k,t,icase=;
LL ans;num=;
init();
scanf("%d",&t);
while(t--)
{
scanf("%d %d %d %d %d",&a,&b,&c,&d,&k);
if(k==||k>b||k>d)
{
printf("Case %d: 0\n",++icase);
continue;
}
ans=;
b/=k;d/=k;
if(b>d) swap(b,d);
for(i=;i<=b;i++) ans+=phi[i];
for(i=b+;i<=d;i++) ans+=getans(b,i);
printf("Case %d: %I64d\n",++icase,ans);
}
return ;
}
/*************莫比乌斯反演****************/
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std; typedef __int64 LL;
const int maxn=1e5+;
int prime[maxn],mu[maxn],num;
bool flag[maxn]; void init()
{
memset(flag,true,sizeof(flag));
mu[]=;
for(int i=;i<maxn;i++)
{
if(flag[i])
{
prime[num++]=i;mu[i]=-;
}
for(int j=;j<num&&i*prime[j]<maxn;j++)
{
flag[i*prime[j]]=false;
if(i%prime[j]==)
{
mu[i*prime[j]]=;
break;
}
else mu[i*prime[j]]=-mu[i];
}
}
} int main()
{
num=;
init();
int i,a,b,c,d,k,t,icase=;
scanf("%d",&t);
while(t--)
{
scanf("%d %d %d %d %d",&a,&b,&c,&d,&k);
if(k==||k>b||k>d)
{
printf("Case %d: 0\n",++icase);
continue;
}
b=b/k;d=d/k;
if(b>d) swap(b,d);
LL ans=,ans1=;
for(i=;i<=b;i++)
ans+=(LL)mu[i]*(b/i)*(d/i);
for(i=;i<=b;i++)
ans1+=(LL)mu[i]*(b/i)*(b/i);
ans-=ans1/;
printf("Case %d: %I64d\n",++icase,ans);
}
return ;
}
hdu 1695 容斥原理或莫比乌斯反演的更多相关文章
- HDU 1695 GCD (莫比乌斯反演)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD (莫比乌斯反演模板)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- hdu 1695: GCD 【莫比乌斯反演】
题目链接 这题求[1,n],[1,m]gcd为k的对数.而且没有顺序. 设F(n)为公约数为n的组数个数 f(n)为最大公约数为n的组数个数 然后在纸上手动验一下F(n)和f(n)的关系,直接套公式就 ...
- hdu 1695 GCD(莫比乌斯反演)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 5321 Beautiful Set (莫比乌斯反演 + 逆元 + 组合数学)
题意:给定一个 n 个数的集合,然后让你求两个值, 1.是将这个集合的数进行全排列后的每个区间的gcd之和. 2.是求这个集合的所有的子集的gcd乘以子集大小的和. 析:对于先求出len,len[i] ...
- 【容斥原理,莫比乌斯反演】用容斥替代莫比乌斯反演第二种形式解决gcd统计问题
名字虽然很长.但是其实很简单,对于这一类问题基本上就是看你能不能把统计的公式搞出来(这时候需要一个会推公式的队友) 来源于某次cf的一道题,盼望上紫的我让潘学姐帮我代打一道题,她看了看跟我说了题解,用 ...
- HDU 4746 Mophues【莫比乌斯反演】
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4746 题意: 1≤x,y≤n , 求gcd(x,y)分解后质因数个数小于等k的(x,y)的对数. 分 ...
- HDU 5468 Puzzled Elena 莫比乌斯反演
题意: 给出一棵树,每个点上有权值.然后求每棵子树中与根节点互质( \(gcd(a, b) = 1\) )的节点个数. 分析: 对于一颗子树来说,设根节点的权值为\(u\), \(count_i\)表 ...
- GCD HDU - 1695 容斥原理(复杂度低的版本)
题意: 让你从区间[a,b]里面找一个数x,在区间[c,d]里面找一个数y.题目上已经设定a=b=1了.问你能找到多少对GCD(x,y)=k.x=5,y=7和y=5,x=7是同一对 题解: 弄了半天才 ...
随机推荐
- Bootstrap历练实例:带表格的面板
带表格的面板 为了在面板中创建一个无边框的表格,我们可以在面板中使用 class .table.假设有个 <div> 包含 .panel-body,我们可以向表格的顶部添加额外的边框用来分 ...
- c++ 定义一个结构体student,输入多个student的信息并以三种方式显示
#include <iostream> #include <string> using namespace std; const int slen = 30; struct s ...
- Protobuf有没有比JSON快5倍?用代码来击破pb性能神话
转 http://www.sohu.com/a/136487507_505779 2017-04-26 07:58 程序设计 /58 /技术 导读:Google 的 Protocol Buffers ...
- Bootstrap 模态框 select2搜索框无法输入
去掉模态框的div中的 tabindex="-1" 这个属性 <div class="modal fade" role="dialog" ...
- $GLOBALS['HTTP_RAW_POST_DATA']与$_POST的区别
$HTTP_RAW_POST_DATA The RAW / uninterpreted HTTP POst information can be accessed with: $GLOBALS ...
- java实现可安装的exe程序
java实现可安装的exe程序 通过编写Java代码,实现可安装的exe文件的一般思路: 1.在eclipse中创建java项目,然后编写Java代码,将编写好的Java项目导出一个.jar格式的ja ...
- Linux远程传输命令scp
指令:scp在不同的linux主机间复制文件带有Security的文件copy,基于ssh登录. 有些linux发行版没有自带scp,因此需要安装scp# yum -y install openssh ...
- day 35 补充
MySQL数据库初识 MySQL数据库 本节目录 一 数据库概述 二 MySQL介绍 三 MySQL的下载安装.简单应用及目录介绍 四 root用户密码设置及忘记密码的解决方案 五 修改字符集 ...
- (转)可简化iOS 应用程序开发的6个Xcode小技巧
Xcode是iPhone和iPad开发者用来编码或者开发iOS app的IDE.Xcode有很多小巧但很有用的功能,很多时候我们可能没有注意到它们,也或者我们没有在合适的水平使用这些功能简化我们的iO ...
- 牛客网暑期ACM多校训练营(第七场)A Minimum Cost Perfect Matching(找规律)
题意: 给定n, 求一个0~n-1的全排列p, 使得的和最小 分析: 打表发现最优解肯定是和为0的, 然后如果为2的幂就是直接反转即可, 不然的话就要分开从前面到后面逐步拆分, 具体思想模拟一下n = ...