Problem Description
Sdjpx is a powful man,he controls a big country.There are n soldiers numbered 1~n(1<=n<=3000).But there is a big problem for him.He wants soldiers sorted in increasing order.He find a way to sort,but there three rules to obey.
1.He can divides soldiers into K disjoint non-empty subarrays.
2.He can sort a subarray many times untill a subarray is sorted in increasing order.
3.He can choose just two subarrays and change thier positions between themselves.
Consider A = [1 5 4 3 2] and P = 2. A possible soldiers into K = 4 disjoint subarrays is:A1 = [1],A2 = [5],A3 = [4],A4 = [3 2],After Sorting Each Subarray:A1 = [1],A2 = [5],A3 = [4],A4 = [2 3],After swapping A4 and A2:A1 = [1],A2 = [2 3],A3 = [4],A4 = [5].
But he wants to know for a fixed permutation ,what is the the maximum number of K?
Notice: every soldier has a distinct number from 1~n.There are no more than 10 cases in the input.
 
Input
First line is the number of cases.
For every case:
Next line is n.
Next line is the number for the n soildiers.
 
Output
the maximum number of K.
Every case a line.
 
Sample Input
2
5
1 5 4 3 2
5
4 5 1 2 3
 
Sample Output
4
2

Hint

Test1: Same as walk through in the statement. Test2: [4 5] [1 2 3] Swap the 2 blocks: [1 2 3] [4 5].

 
启发博客:http://www.cnblogs.com/FxxL/p/7253028.html
题意: 给出n,一个1~n的排列,要求进行三步操作
           1.分区(随便分)
           2.对分好的每一个区内进行从小到大的排序
           3.挑选两个区进行交换(只能挑选两个,只能交换易次),使得序列的顺序变成1-n;
          问在满足要求的情况下,最多能分成多少区
题解:第一步是分区,第二步是枚举。
          分区是开了一个f[i][j]数组用来记录,i-j区间里可以有多少满足要求的段,用到mx,mi,r来辅助,具体可见代码注释。
          枚举是枚举要交换的两个区间,每次更新答案的最大值。设左右区间分别为seg_a,seg_b。
          seg_a要满足:第一段或者之前包括1~i-1的所有数字,当然自身不能为空
                                把这个区间最大的数定义为k,根据k来枚举seg_b,k是seg_b的右端点
                                还需满足k==n或者k+1及以后的所有数字包含k+1~n
          seg_b要满足:k是seg_b的右端点,自身不为空,要保证它的最小值是i
          像上述这样来做即可,当然中间会有一些不小心造成的WA点,大家注意即可
 
 #include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
using namespace std;
#define MAXN 3005 int a[MAXN],res,n;
int mi[MAXN][MAXN],mx[MAXN][MAXN];
//mi[i][j]表示从i到j的最小值,mx[i][j]表示从i到j的最大值
int f[MAXN][MAXN],r[MAXN];
//f[i][j]表示从i到j可以分成的区间数,r[i]表示最近一次从i开始的区间的右端(方便更新) void init()//第一步,分块
{
memset(mi,,sizeof(mi));
memset(mx,,sizeof(mx));
memset(f,,sizeof(f));
memset(r,,sizeof(r));
for(int i=;i<=n;i++)
{
mi[i][i]=a[i];
mx[i][i]=a[i];
f[i][i]=;
r[i]=i;
}
//为mi,mx赋值
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
{
mx[i][j]=max(a[j],mx[i][j-]);
mi[i][j]=min(a[j],mi[i][j-]);
}
//为f数组赋值
for(int t=;t<=n;t++)//t在枚举区间长度
for(int i=;i+t-<=n;i++)
{
int j=i+t-;
//不是连续的一段无法分区间
if(mx[i][j]-mi[i][j]!=t-)
f[i][j]=;
else
{
//j一定大于r[i]
if(mi[i][r[i]]>mi[i][j])
f[i][j]=;
else
f[i][j]=f[i][r[i]]+f[r[i]+][j];
r[i]=j;//这个r数组很精华
}
}
} void solve()//第二步,枚举找交换区间
{
int k;
res=max(,f[][n]);//WA点,一开始写成res=1就WA了
//先枚举seg_a
for(int i=;i<=n;i++)
for(int j=i;j<=n;j++)
{
//满足条件才能继续枚举seg_b
if(i==||(f[][i-]!=&&mi[][i-]==))
{
k=mx[i][j];
if(f[i][j]&&(k==n||(f[k+][n]!=&&mx[k+][n]==n)))
{
for(int t=j+;t<=k;t++)
{
if(f[t][k]&&mi[t][k]==i)
{
//printf("%d %d %d %d %d\n",i,j,t,k,f[1][i-1]+1+f[j+1][t-1]+1+f[k+1][n]);
res=max(res,f[][i-]++f[j+][t-]++f[k+][n]);
}
}
}
}
}
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
init();
solve();
printf("%d\n",res);
}
return ; }
             
 

HDU 6049 17多校2 Sdjpx Is Happy(思维题difficult)的更多相关文章

  1. HDU 6140 17多校8 Hybrid Crystals(思维题)

    题目传送: Hybrid Crystals Problem Description > Kyber crystals, also called the living crystal or sim ...

  2. HDU 6034 17多校1 Balala Power!(思维 排序)

    Problem Description Talented Mr.Tang has n strings consisting of only lower case characters. He want ...

  3. HDU 6143 17多校8 Killer Names(组合数学)

    题目传送:Killer Names Problem Description > Galen Marek, codenamed Starkiller, was a male Human appre ...

  4. HDU 6045 17多校2 Is Derek lying?

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=6045 Time Limit: 3000/1000 MS (Java/Others)    Memory ...

  5. HDU 6124 17多校7 Euler theorem(简单思维题)

    Problem Description HazelFan is given two positive integers a,b, and he wants to calculate amodb. Bu ...

  6. HDU 3130 17多校7 Kolakoski(思维简单)

    Problem Description This is Kolakosiki sequence: 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1……. This seq ...

  7. HDU 6038 17多校1 Function(找循环节/环)

    Problem Description You are given a permutation a from 0 to n−1 and a permutation b from 0 to m−1. D ...

  8. HDU 6103 17多校6 Kirinriki(双指针维护)

    Problem Description We define the distance of two strings A and B with same length n isdisA,B=∑i=0n− ...

  9. HDU 6098 17多校6 Inversion(思维+优化)

    Problem Description Give an array A, the index starts from 1.Now we want to know Bi=maxi∤jAj , i≥2. ...

随机推荐

  1. 安装docker No package docker available

    安装docker 时候出现以下问题 yum -y install dockerLoaded plugins: fastestmirrorDetermining fastest mirrors * ba ...

  2. Oracle 11.2.0.4.0 Dataguard部署和日常维护(6)-Active Dataguard篇

    1. 检查主备库的状态 on primary column DATABASE_ROLE format a20 column OPEN_MODE format a15 column PROTECTION ...

  3. Boosting

    Boosting is a greedy alogrithm. The alogrithm works by applying the weak learner sequentially to wei ...

  4. python中RabbitMQ的使用(路由键)

    1.简介 当我们希望每个接收端接收各自希望的消息时,我们可以使用路由键,此时交换机的类型为direct. 2.工作原理 每个接收端的消息队列在绑定交换机的时候,可以设定相应的路由键. 发送端通过交换机 ...

  5. os模块,序列化模块,json模块,pickle模块

    一.os模块os.system("bash command") 运行shell命令,直接显示 os.popen("bash command).read() 运行shell ...

  6. stealwatch里的安全功能——ETA结果会显示加密套件以及key长度,还有流量大小(例如41MB)

    以后可以考虑的方向,在stealwatch里包含: ad Injector click fraud cryptocurrency miner exploit kit malicious adverti ...

  7. 关于JAVA的一些知识点

    1.java.lang.Runtime.getRuntime().availableProcessors() Returns the number of processors available to ...

  8. get url img

    selenium     1● 了解selenium 这个是做 web页面测试,模拟用户测试   =====> pip install selenium 安装     2● django 用于接 ...

  9. Mysql按日期分组(group by)查询统计的时候,没有数据补0的解决办法

    转载自:http://blog.csdn.net/jie11447416/article/details/50887888 1.案例中的数据结构和数据如下 2.在没有解决的时候,是这样的   SELE ...

  10. ci框架多语言切换

    1.多语言切换首先配置config文件默认语言 2.创建自己的语言包:language chinese english目录下的语言包文件名必须以  xx_lang.php 可根据自己的需求创建数组: ...