HDU 6049 17多校2 Sdjpx Is Happy(思维题difficult)
1.He can divides soldiers into K disjoint non-empty subarrays.
2.He can sort a subarray many times untill a subarray is sorted in increasing order.
3.He can choose just two subarrays and change thier positions between themselves.
Consider A = [1 5 4 3 2] and P = 2. A possible soldiers into K = 4 disjoint subarrays is:A1 = [1],A2 = [5],A3 = [4],A4 = [3 2],After Sorting Each Subarray:A1 = [1],A2 = [5],A3 = [4],A4 = [2 3],After swapping A4 and A2:A1 = [1],A2 = [2 3],A3 = [4],A4 = [5].
But he wants to know for a fixed permutation ,what is the the maximum number of K?
Notice: every soldier has a distinct number from 1~n.There are no more than 10 cases in the input.
For every case:
Next line is n.
Next line is the number for the n soildiers.
Every case a line.
Test1: Same as walk through in the statement. Test2: [4 5] [1 2 3] Swap the 2 blocks: [1 2 3] [4 5].
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
using namespace std;
#define MAXN 3005 int a[MAXN],res,n;
int mi[MAXN][MAXN],mx[MAXN][MAXN];
//mi[i][j]表示从i到j的最小值,mx[i][j]表示从i到j的最大值
int f[MAXN][MAXN],r[MAXN];
//f[i][j]表示从i到j可以分成的区间数,r[i]表示最近一次从i开始的区间的右端(方便更新) void init()//第一步,分块
{
memset(mi,,sizeof(mi));
memset(mx,,sizeof(mx));
memset(f,,sizeof(f));
memset(r,,sizeof(r));
for(int i=;i<=n;i++)
{
mi[i][i]=a[i];
mx[i][i]=a[i];
f[i][i]=;
r[i]=i;
}
//为mi,mx赋值
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
{
mx[i][j]=max(a[j],mx[i][j-]);
mi[i][j]=min(a[j],mi[i][j-]);
}
//为f数组赋值
for(int t=;t<=n;t++)//t在枚举区间长度
for(int i=;i+t-<=n;i++)
{
int j=i+t-;
//不是连续的一段无法分区间
if(mx[i][j]-mi[i][j]!=t-)
f[i][j]=;
else
{
//j一定大于r[i]
if(mi[i][r[i]]>mi[i][j])
f[i][j]=;
else
f[i][j]=f[i][r[i]]+f[r[i]+][j];
r[i]=j;//这个r数组很精华
}
}
} void solve()//第二步,枚举找交换区间
{
int k;
res=max(,f[][n]);//WA点,一开始写成res=1就WA了
//先枚举seg_a
for(int i=;i<=n;i++)
for(int j=i;j<=n;j++)
{
//满足条件才能继续枚举seg_b
if(i==||(f[][i-]!=&&mi[][i-]==))
{
k=mx[i][j];
if(f[i][j]&&(k==n||(f[k+][n]!=&&mx[k+][n]==n)))
{
for(int t=j+;t<=k;t++)
{
if(f[t][k]&&mi[t][k]==i)
{
//printf("%d %d %d %d %d\n",i,j,t,k,f[1][i-1]+1+f[j+1][t-1]+1+f[k+1][n]);
res=max(res,f[][i-]++f[j+][t-]++f[k+][n]);
}
}
}
}
}
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
init();
solve();
printf("%d\n",res);
}
return ; }
HDU 6049 17多校2 Sdjpx Is Happy(思维题difficult)的更多相关文章
- HDU 6140 17多校8 Hybrid Crystals(思维题)
题目传送: Hybrid Crystals Problem Description > Kyber crystals, also called the living crystal or sim ...
- HDU 6034 17多校1 Balala Power!(思维 排序)
Problem Description Talented Mr.Tang has n strings consisting of only lower case characters. He want ...
- HDU 6143 17多校8 Killer Names(组合数学)
题目传送:Killer Names Problem Description > Galen Marek, codenamed Starkiller, was a male Human appre ...
- HDU 6045 17多校2 Is Derek lying?
题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=6045 Time Limit: 3000/1000 MS (Java/Others) Memory ...
- HDU 6124 17多校7 Euler theorem(简单思维题)
Problem Description HazelFan is given two positive integers a,b, and he wants to calculate amodb. Bu ...
- HDU 3130 17多校7 Kolakoski(思维简单)
Problem Description This is Kolakosiki sequence: 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1……. This seq ...
- HDU 6038 17多校1 Function(找循环节/环)
Problem Description You are given a permutation a from 0 to n−1 and a permutation b from 0 to m−1. D ...
- HDU 6103 17多校6 Kirinriki(双指针维护)
Problem Description We define the distance of two strings A and B with same length n isdisA,B=∑i=0n− ...
- HDU 6098 17多校6 Inversion(思维+优化)
Problem Description Give an array A, the index starts from 1.Now we want to know Bi=maxi∤jAj , i≥2. ...
随机推荐
- MySQL5.6复制技术(2)-主从部署以及半同步配置详细过程
当前环境规划 主机名称 ec2t-pgtest-01 ec2t-pgtest-02 IP地址 10.189.102.118 10.189.100.195 角色 master slave 系统版本 Ce ...
- PostgreSQL导出一张表到MySQL
1. 查看PostgreSQL表结构,数据量,是否有特殊字段值 region_il=# select count(*) from result_basic; count --------- ( row ...
- Golang 在 Mac、Linux、Windows 下如何交叉编译(转)
原文地址:Golang 在 Mac.Linux.Windows 下如何交叉编译 Golang 支持交叉编译,在一个平台上生成另一个平台的可执行程序,最近使用了一下,非常好用,这里备忘一下. Mac 下 ...
- 在ubuntu14中搭建邮箱服务器
1.前提准备 1.1在服务器上安装ubuntu14 1.2为ubuntu14配置静态ip 使用命令 sudo vim /etc/network/interfaces打开配置文件 修改内容如下: 使用命 ...
- Segments
Segments Given n segments in the two dimensional space, write a program, which determines if there e ...
- 字符序列(characts)
字符序列(characts) 问题描述: 从三个元素的集合[A,B,C]中选取元素生成一个N 个字符组成的序列,使得没有两个相邻的 子序列(子序列长度=2)相同,例:N=5 时ABCBA 是合格的,而 ...
- RCNN 目标识别基本原理
RCNN- 将CNN引入目标检测的开山之作 from:https://zhuanlan.zhihu.com/p/23006190 前面一直在写传统机器学习.从本篇开始写一写 深度学习的内容. 可能需要 ...
- Qt Widgets——抽象按钮及其继承类
QAbstractButton是有关“按钮”的基类 描述了一个按钮应该具有的组成.它的公有函数如下: QAbstractButton(QWidget * parent = ) ~QAbstractBu ...
- FileZilla Server隐藏版本号教程
1.查看当前是否泄漏版本号 telnet FileZilla监听端口查看返回信息:telnet 192.168.220.130 21 2.自定义欢迎信息 登录FileZilla--点击“Edit”-- ...
- SecureCRT修改显示行数
Scrollback buffer应该是保留的行数,初始值500,修改成自己想要的数值保存即可. 参考:http://blog.csdn.net/w410589502/article/details/ ...