大意: 给定序列, 求选出一个最长的子序列, 使得任选两个[1,8]的数字, 在子序列中的出现次数差不超过1, 且子序列中相同数字连续.

正解是状压dp, 先二分转为判断[1,8]出现次数>=x是否成立, 再dp求出前i位匹配状态S长度为x+1的数字个数的最大值, 特判一下最低次数为0的情况. 这题打了好久, 太菜了.......

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <math.h>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <string.h>
#include <bitset>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
typedef bitset<10> btc;
const int P = 1e9+7, INF = 0xbcbcbcbc;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
//head const int N = 1e3+10, S = (1<<8)-1;
int n, ans;
int a[N], dp[N][S+1], dig[S+1], f[N][N][9], g[S+1];
void chkmax(int &x, int y) {x=max(x,y);}
void chkmin(int &x, int y) {x=min(x,y);}
int chk(int x) {
memset(dp, 0xbc, sizeof dp);
dp[0][0] = 0;
REP(i,1,n) REP(j,0,S-1) if (dp[i-1][j]!=INF) {
for (int k=~j&S, t; k; k^=t) {
t = k&-k;
int p1 = f[i][x][dig[t]], p2 = f[i][x+1][dig[t]];
if (p1<=n) chkmax(dp[p1][j^t], dp[i-1][j]);
if (p2<=n) chkmax(dp[p2][j^t], dp[i-1][j]+1);
}
}
int r = INF;
REP(i,1,n) chkmax(r,dp[i][S]);
ans = max(ans, r+8*x);
return r!=INF;
} int main() {
REP(i,0,7) dig[1<<i]=i+1;
scanf("%d", &n);
REP(i,1,n) scanf("%d", a+i);
memset(f,0x3f,sizeof f);
PER(i,1,n) REP(j,1,n) REP(k,1,8) {
if (a[i]==k) f[i][1][k]=i,f[i][j][k]=f[i+1][j-1][k];
else chkmin(f[i][j][k],f[i+1][j][k]);
}
g[0] = 1;
REP(i,1,n) REP(j,0,S) if (!(j>>a[i]-1&1)) {
g[j^1<<a[i]-1] |= g[j];
}
REP(i,0,S) if (g[i]) ans=max(ans,__builtin_popcount(i));
int l=1, r=n/8;
while (l<=r) {
if (chk(mid)) l=mid+1;
else r=mid-1;
}
printf("%d\n", ans);
}

Vladik and cards CodeForces - 743E (状压)的更多相关文章

  1. Hongcow Buys a Deck of Cards CodeForces - 744C (状压)

    大意: n个红黑卡, 每天可以选择领取一块红币一块黑币, 或者买一张卡, 第$i$张卡的花费红币数$max(r_i-A,0)$, 花费黑币数$max(b_i-B,0)$, A为当前红卡数, B为当前黑 ...

  2. CodeForces 11D(状压DP 求图中环的个数)

    Given a simple graph, output the number of simple cycles in it. A simple cycle is a cycle with no re ...

  3. Clear The Matrix CodeForces - 903F (状压)

    大意: 给定4行的棋盘以及4种大小的正方形方块, 每种各有一定花费, 每次可以选一种方块放在棋盘上, 棋盘对应格子全变为'.', 求最少花费使得棋盘全部变成'.' 状压基本操作练习, 状态取12位, ...

  4. Pollywog CodeForces - 917C (状压)

    链接 大意: 一共n个格子, 初始$x$只蝌蚪在前$x$个格子, 每次最左侧的蝌蚪向前跳, 跳跃距离在范围[1,k], 并且每只蝌蚪跳跃都有一定花费, 有$q$个格子上有石头, 若有蝌蚪跳到某块石头上 ...

  5. Codeforces 678E 状压DP

    题意:有n位选手,已知n位选手之间两两获胜的概率,问主角(第一个选手)最终站在擂台上的概率是多少? 思路:一看数据范围肯定是状压DP,不过虽然是概率DP,但是需要倒着推:我们如果正着推式子的话,初始状 ...

  6. Codeforces 8C 状压DP

    题意:有个人想收拾行李,而n个物品散落在房间的各个角落里(n < 24).现在给你旅行箱的坐标(人初始在旅行箱处),以及n个物品的坐标,你一次只能拿最多两个物品,并且拿了物品就必须放回旅行箱,不 ...

  7. Keyboard Purchase CodeForces - 1238E (状压)

    大意: 给定串$s$, 字符集为字母表前$m$个字符, 求一个$m$排列$pos$, 使得$\sum\limits_{i=2}^n|{pos}_{s_{i-1}}-{pos}_{s_{i}}|$最小. ...

  8. Codeforces 1215E 状压DP

    题意:给你一个序列,你可以交换序列中的相邻的两个元素,问最少需要交换多少次可以让这个序列变成若干个极大的颜色相同的子段. 思路:由于题目中的颜色种类很少,考虑状压DP.设dp[mask]为把mask为 ...

  9. codeforces 1185G1 状压dp

    codeforces 1185G1. Playlist for Polycarp (easy version)(动态规划) 传送门:https://codeforces.com/contest/118 ...

随机推荐

  1. Docker 编排工具Rancher 2.0

    下载镜像: [root@localhost hongdada]# docker pull rancher/server:preview 运行容器: [root@localhost hongdada]# ...

  2. JVM启动参数大全

    java启动参数共分为三类: 其一是标准参数(-),所有的JVM实现都必须实现这些参数的功能,而且向后兼容: 其二是非标准参数(-X),默认jvm实现这些参数的功能,但是并不保证所有jvm实现都满足, ...

  3. 比酒量|2012年蓝桥杯B组题解析第三题-fishers

    (5')比酒量 有一群海盗(不多于20人),在船上比拼酒量.过程如下:打开一瓶酒,所有在场的人平分喝下,有几个人倒下了.再打开一瓶酒平分,又有倒下的,再次重复...... 直到开了第4瓶酒,坐着的已经 ...

  4. 完全卸载oraclean安装

    完全卸载oracle11g步骤:1. 开始->设置->控制面板->管理工具->服务 停止所有Oracle服务.2. 开始->程序->Oracle - OraHome ...

  5. HIHOcoder 1457 后缀自动机四·重复旋律7

    思路 后缀自动机题目,题目本质上是要求求出所有不同的子串的和,SAM每个节点中存放的子串互不相同,所以对于每个节点的sum,可以发现是可以递推的,每个点对子节点贡献是sum[x]*10+c*sz[x] ...

  6. P2617 Dynamic Rankings(带修主席树)

    所谓带修主席树,就是用树状数组的方法维护主席树的前缀和 思路 带修主席树的板子 注意数据范围显然要离散化即可 代码 #include <cstdio> #include <cstri ...

  7. 【ASP.NET】System.Web.Routing - HttpMethodConstraint Class

    你可以自己定义你的ASP.NET程序接收的get post put 或者delete请求. 使用这个约束的方式为: void Application_Start(object sender, Even ...

  8. .NET扩展方法 封装公用方法

    定义方法的时候  第一个参数前面加上this   表示这个方法可以被IQueryable类型的对象.出来  调用的时候 只用传第二个参数  第一个参数不用传 第一个参数就是.出当前方法的参数 定义扩展 ...

  9. vue 父组件调用子组件方法

    情景: 父组件中引入上传附件的子组件:点击组件可以分别上传对应要求的图片,子组件内部循环可创建多个模块. 父组件传入数组子组件循环来创建不同的组件模块,所有事件都在子组件内部. 父组件页面的上方同时有 ...

  10. asp.net 虹软人脸识别sdk 释放内存

    初始化时申请内存,用完记得释放,不然就会报“内存已满”的. 使用时: pMem = Marshal.AllocHGlobal(detectSize); 释放内存: Marshal.FreeHGloba ...