Vladik and cards CodeForces - 743E (状压)
大意: 给定序列, 求选出一个最长的子序列, 使得任选两个[1,8]的数字, 在子序列中的出现次数差不超过1, 且子序列中相同数字连续.
正解是状压dp, 先二分转为判断[1,8]出现次数>=x是否成立, 再dp求出前i位匹配状态S长度为x+1的数字个数的最大值, 特判一下最低次数为0的情况. 这题打了好久, 太菜了.......
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <math.h>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <string.h>
#include <bitset>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
typedef bitset<10> btc;
const int P = 1e9+7, INF = 0xbcbcbcbc;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
//head const int N = 1e3+10, S = (1<<8)-1;
int n, ans;
int a[N], dp[N][S+1], dig[S+1], f[N][N][9], g[S+1];
void chkmax(int &x, int y) {x=max(x,y);}
void chkmin(int &x, int y) {x=min(x,y);}
int chk(int x) {
memset(dp, 0xbc, sizeof dp);
dp[0][0] = 0;
REP(i,1,n) REP(j,0,S-1) if (dp[i-1][j]!=INF) {
for (int k=~j&S, t; k; k^=t) {
t = k&-k;
int p1 = f[i][x][dig[t]], p2 = f[i][x+1][dig[t]];
if (p1<=n) chkmax(dp[p1][j^t], dp[i-1][j]);
if (p2<=n) chkmax(dp[p2][j^t], dp[i-1][j]+1);
}
}
int r = INF;
REP(i,1,n) chkmax(r,dp[i][S]);
ans = max(ans, r+8*x);
return r!=INF;
} int main() {
REP(i,0,7) dig[1<<i]=i+1;
scanf("%d", &n);
REP(i,1,n) scanf("%d", a+i);
memset(f,0x3f,sizeof f);
PER(i,1,n) REP(j,1,n) REP(k,1,8) {
if (a[i]==k) f[i][1][k]=i,f[i][j][k]=f[i+1][j-1][k];
else chkmin(f[i][j][k],f[i+1][j][k]);
}
g[0] = 1;
REP(i,1,n) REP(j,0,S) if (!(j>>a[i]-1&1)) {
g[j^1<<a[i]-1] |= g[j];
}
REP(i,0,S) if (g[i]) ans=max(ans,__builtin_popcount(i));
int l=1, r=n/8;
while (l<=r) {
if (chk(mid)) l=mid+1;
else r=mid-1;
}
printf("%d\n", ans);
}
Vladik and cards CodeForces - 743E (状压)的更多相关文章
- Hongcow Buys a Deck of Cards CodeForces - 744C (状压)
大意: n个红黑卡, 每天可以选择领取一块红币一块黑币, 或者买一张卡, 第$i$张卡的花费红币数$max(r_i-A,0)$, 花费黑币数$max(b_i-B,0)$, A为当前红卡数, B为当前黑 ...
- CodeForces 11D(状压DP 求图中环的个数)
Given a simple graph, output the number of simple cycles in it. A simple cycle is a cycle with no re ...
- Clear The Matrix CodeForces - 903F (状压)
大意: 给定4行的棋盘以及4种大小的正方形方块, 每种各有一定花费, 每次可以选一种方块放在棋盘上, 棋盘对应格子全变为'.', 求最少花费使得棋盘全部变成'.' 状压基本操作练习, 状态取12位, ...
- Pollywog CodeForces - 917C (状压)
链接 大意: 一共n个格子, 初始$x$只蝌蚪在前$x$个格子, 每次最左侧的蝌蚪向前跳, 跳跃距离在范围[1,k], 并且每只蝌蚪跳跃都有一定花费, 有$q$个格子上有石头, 若有蝌蚪跳到某块石头上 ...
- Codeforces 678E 状压DP
题意:有n位选手,已知n位选手之间两两获胜的概率,问主角(第一个选手)最终站在擂台上的概率是多少? 思路:一看数据范围肯定是状压DP,不过虽然是概率DP,但是需要倒着推:我们如果正着推式子的话,初始状 ...
- Codeforces 8C 状压DP
题意:有个人想收拾行李,而n个物品散落在房间的各个角落里(n < 24).现在给你旅行箱的坐标(人初始在旅行箱处),以及n个物品的坐标,你一次只能拿最多两个物品,并且拿了物品就必须放回旅行箱,不 ...
- Keyboard Purchase CodeForces - 1238E (状压)
大意: 给定串$s$, 字符集为字母表前$m$个字符, 求一个$m$排列$pos$, 使得$\sum\limits_{i=2}^n|{pos}_{s_{i-1}}-{pos}_{s_{i}}|$最小. ...
- Codeforces 1215E 状压DP
题意:给你一个序列,你可以交换序列中的相邻的两个元素,问最少需要交换多少次可以让这个序列变成若干个极大的颜色相同的子段. 思路:由于题目中的颜色种类很少,考虑状压DP.设dp[mask]为把mask为 ...
- codeforces 1185G1 状压dp
codeforces 1185G1. Playlist for Polycarp (easy version)(动态规划) 传送门:https://codeforces.com/contest/118 ...
随机推荐
- CodeTyphon跨平台交叉编译的配置
CodeTyphon和Lazarus的关系相当于就是ubuntu和linux的关系 不过CodeTyphon提供了很多一键配置即可使用的交叉编译配置,而Lazarus就比较麻烦了,我也没用Lazaru ...
- 【特性】Redis4.0新特性
模块系统 Redis 4.0 发生的最大变化就是加入了模块系统, 这个系统可以让用户通过自己编写的代码来扩展和实现 Redis 本身并不具备的功能, 具体使用方法可以参考 antirez 的博文< ...
- html 之 body topmargin、leftmargin、rightmargin、bottomnargin
基本语法 <body topmargin=value leftmargin=value rightmargin=value bottomnargin=value> 语法说明 通过设置top ...
- 论文笔记:Diffusion-Convolutional Neural Networks (传播-卷积神经网络)
Diffusion-Convolutional Neural Networks (传播-卷积神经网络)2018-04-09 21:59:02 1. Abstract: 我们提出传播-卷积神经网络(DC ...
- 用RAR将多个文件夹一次性压缩为多个对应zip文件
选中要压缩的所有文件夹.右键,选“添加到压缩文件...”,弹出的菜单如下图: 点击菜单栏“文件”.在“把每个文件都单独压缩文件中”选中,才可以单独创建压缩.如下图
- ETCD应用
etcd:从应用场景到实现原理的全方位解读 ETCD:A highly-available key value store for shared configuration and service d ...
- Docker3之Swarm
Make sure you have published the friendlyhello image you created by pushing it to a registry. We’ll ...
- 8、nginx和tengine简介
练习: 使用nginx反向代理(rr调度)用户请求至两个以上的后端LAMP(按标准路径部署的有pma,wd),不管用户请求是什么内容都反向代理至后端服务器去,但是如果用户请求的是图片或者是html,就 ...
- Python3简单爬虫抓取网页图片
现在网上有很多python2写的爬虫抓取网页图片的实例,但不适用新手(新手都使用python3环境,不兼容python2), 所以我用Python3的语法写了一个简单抓取网页图片的实例,希望能够帮助到 ...
- Servlet中web.xml的配置
引言:这是一个采用原生Servlet开发的项目的一个简要配置,在这里记录一下,以便以后用到了 可以直接copy,如又侵权,请联系本博主. <?xml version="1.0" ...