题意:

有n个王子和m个公主,每个王子都会喜欢若干个公主,也就是王子只跟自己喜欢的公主结婚,公主就比较悲惨, 跟谁结婚都行。然后输出王子可能的结婚对象,必须保证王子与任意这些对象中的一个结婚,都不会影响到剩余的王子的配对数,也就是不能让剩余的王子中突然有一个人没婚可结了。

思路:

对每个没有匹配的公主,建一个虚拟的王子,让他们变成匹配,然后由这个虚拟王子向每个公主建边。对每个没有匹配的王子,建一个虚拟的公主,让他们变成匹配,然后每个王子向这个虚拟公主建边。求一个Tarjan,判断是否为1个强连通分量即可。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#define maxn 2005 using namespace std; int dfn[maxn],low[maxn],vi[maxn],Stack[maxn],head[maxn],id[maxn],n,e,lab,num,top,ans[maxn];
int graphic[][],m,match[maxn],cho[maxn],mm; struct Edge{
int u,v,next;
}edge[]; vector<int> q[maxn],girl[maxn]; void init()
{
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(vi,,sizeof(vi));
memset(head,-,sizeof(head));
memset(id,,sizeof(id));
memset(graphic,,sizeof(graphic));
memset(cho,,sizeof(cho));
memset(match,-,sizeof(match));
memset(ans,,sizeof(ans));
for(int i=;i<maxn;i++)
q[i].clear(),girl[i].clear();
e=lab=num=top=mm=;
} void add(int u,int v)
{
edge[e].u=u,edge[e].v=v,edge[e].next=head[u],head[u]=e++;
} int dfs(int u)//匈牙利算法
{
int i;
for(i=;i<=m;i++)
{
if(!vi[i]&&graphic[u][i])
{
vi[i]=;
if(match[i]==-||dfs(match[i]))
{
match[i]=u;
return ;
}
}
}
return ;
} int Tarjan(int u)
{
dfn[u]=low[u]=++lab;
vi[u]=;
Stack[top++]=u;
int i,v;
for(i=head[u];i!=-;i=edge[i].next)
{
v=edge[i].v;
if(!dfn[v])
{
Tarjan(v);
low[u]=min(low[u],low[v]);
}
if(vi[v])
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
++num;
do{
i=Stack[--top];
vi[i]=;
id[i]=num;
}while(i!=u);
}
return ;
} void solve()
{
int i,j;
for(i=;i<=n+m+mm;i++)
if(!dfn[i])
Tarjan(i);
for(i=n+;i<=n+m;i++)
{
q[id[i]].push_back(i-n);
}
int cnt=;
for(i=;i<=n;i++)
{
int size=q[id[i]].size();
cnt=;
for(j=;j<size;j++)
{
if(graphic[i][q[id[i]][j]])
ans[cnt++]=q[id[i]][j];
}
printf("%d",cnt);
for(j=;j<cnt;j++)
printf(" %d",ans[j]);
printf("\n");
}
} int main()
{
int a,b,i,j,t,Case=;
scanf("%d",&t);
while(t--)
{
init();
scanf("%d%d",&n,&m);
for(i=;i<=n;i++)
{
scanf("%d",&a);
while(a--)
{
scanf("%d",&b);
add(i,b+n);
graphic[i][b]=;
}
}
int num=;
memset(match,-,sizeof(match));
for(i=;i<=n;i++)
{
memset(vi,,sizeof(vi));
if(dfs(i))
num++;
}
mm=;
for(i=;i<=m;i++)
{
if(match[i]==-)
{
mm++;
add(n+m+mm,i+n);
add(i+n,n+m+mm);
for(j=;j<=m;j++)
add(n+m+mm,j+n);
}
else
{
cho[match[i]]=;
}
add(i+n,match[i]);
}
for(i=;i<=n;i++)
{
if(cho[i]==)
{
mm++;
add(i,n+m+mm);
add(n+m+mm,i);
for(j=;j<=n;j++)
add(j,n+m+mm);
}
}
memset(vi,,sizeof(vi));
printf("Case #%d:\n",++Case);
solve();
}
return ;
}

HDU4685 Prince and Princess【强连通】的更多相关文章

  1. 强连通+二分匹配(hdu4685 Prince and Princess)

    Prince and Princess Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  2. HDU4685 Prince and Princess 完美搭配+良好的沟通

    意甲冠军:今天,有n王子,m公主.现在给他们配对,与王子会嫁给一个男人,他喜欢.公主无法做出选择. 这标题去咬硬,还有一类似的题目poj1904.那个题目也是给王子与公主配对,但那个是王子公主各n个, ...

  3. HDU4865 Prince and Princess 强连通分量+二分图判定

    这个题就是建图费点劲,别的和我上一篇博客一样 然后,参考思路请戳这里http://www.cnblogs.com/wally/archive/2013/09/12/3317883.html 补充:这个 ...

  4. Prince and Princess HDU - 4685(匹配 + 强连通)

    Prince and Princess Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  5. HDU 4685 Prince and Princess (2013多校8 1010题 二分匹配+强连通)

    Prince and Princess Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  6. HDU4685:Prince and Princess(二分图匹配+tarjan)

    Prince and Princess Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  7. 10635 - Prince and Princess

    Problem D Prince and Princess Input: Standard Input Output: Standard Output Time Limit: 3 Seconds In ...

  8. UVa10653.Prince and Princess

    题目连接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. uva 10635 - Prince and Princess(LCS)

    题目连接:10635 - Prince and Princess 题目大意:给出n, m, k,求两个长度分别为m + 1 和 k + 1且由1~n * n组成的序列的最长公共子序列长的. 解题思路: ...

随机推荐

  1. python之打印日志logging

    import logging # 简单打印日志举例 logging.basicConfig(level=logging.DEBUG) # 设置日志级别,WARN logging.warning('Wa ...

  2. (python爬取小故事网并写入mysql)

    前言: 这是一篇来自整理EVERNOTE的笔记所产生的小博客,实现功能主要为用广度优先算法爬取小故事网,爬满100个链接并写入mysql,虽然CS作为双学位已经修习了三年多了,但不仅理论知识一般,动手 ...

  3. 【Luogu1937】仓配置(贪心,线段树)

    [Luogu1937]仓配置 题面 直接找洛谷把... 题解 很明显的贪心吧 按照线段的右端点为第一关键字,左端点第二关键字排序 然后线段树维护区间最小就可以啦 #include<iostrea ...

  4. [luogu#2019/03/10模拟赛][LnOI2019]长脖子鹿省选模拟赛赛后总结

    t1-快速多项式变换(FPT) 题解 看到这个\(f(x)=a_0+a_1x+a_2x^2+a_3x^3+ \cdots + a_nx^n\)式子,我们会想到我们学习进制转换中学到的,那么我们就只需要 ...

  5. pandas 从入门到遗忘

    读取大文件(内存有限): import pandas as pd reader = pd.read_csv("tap_fun_test.csv", sep=',', iterato ...

  6. 【POJ1151】Atlantis

    题目大意:给定 N 个矩形,求这些矩形的面积并. 题解:采用扫描线算法. 首先,按照矩形的横坐标排序,在纵坐标方向上维护一根扫描线被覆盖的长度,在这里采用线段树维护.统计答案时,从左到右扫描 2N 个 ...

  7. 【POJ1741】Tree

    题目大意:给定一棵 N 个节点的无根树,边有边权,统计树上边权和不大于 K 的路径数. 对于每条树上路径,对于每一个点来说,该路径只有经过该点和不经过该点两种情况,对于不经过该点的情况,可以转化成是否 ...

  8. 【codevs1048】石子归并(初级版)

    采用动态规划的原因:合并有一定次序,即:只能相邻石子进行合并. 阶段:当前合并了的区间长度 状态:区间的左右端点 状态转移方程:\(dp[l][r]=min\{dp[l][r],dp[l][k]+dp ...

  9. JavaScript窗体Window.ShowModalDialog使用详解

    Javascript有许多内建的方法来产生对话框,如:window.alert(), window.confirm(),window.prompt().等. 然而IE提供更多的方法支持对话框.如: s ...

  10. apigateway-kong(七)配置说明

    这一部分应该在最开始介绍,但是我觉得在对kong有一定了解后再回头看下配置,会理解的更深刻.接下来对这个配置文件里的参数做个详细的解释便于更好的使用或优化kong网关. 目录 一.配置加载 二.验证配 ...