传送门

先考虑二进制下为3倍数的数的共同特点自己手玩去,可以发现这些数奇数二进制位上的1个数(记为\(a\))和偶数二进制位上的1个数(记为\(b\))在模3意义下相等(\(a \equiv b (mod 3)\)),所以可以维护所有前缀中,\(a\)为0/1/2以及\(b\)为0/1/2的前缀个数,用线段树维护每个区间的这些值.但是合并的时候,我们还需要知道前一个区间的最后一个前缀的\(a,b\)状态,所以把这个也维护起来.每次就单点修改,询问就把某个区间的所有状态的前缀个数抠出来,然后分类讨论一下(逃

代码里记录状态是\(a-b\)在模3意义下为0/1/2的前缀个数,以及最后一个前缀的0/1/2状态,这样比较方便(雾)

(因为实在不知道怎么写,就看代码吧

#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double
#define eps (1e-5) using namespace std;
const int N=500000+10;
il LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
#define lc (o<<1)
#define rc ((o<<1)|1)
#define mid ((l+r)>>1)
struct node
{
int wb[3],las;
node(){wb[0]=wb[1]=wb[2]=las=0;}
}s[N<<2],nw;
il node ad(node a,node b)
{
node an;
an.las=(a.las+b.las)%3;
for(int i=0;i<3;i++) an.wb[i]=a.wb[i]+b.wb[(i-a.las+3)%3];
return an;
}
void bui(int o,int l,int r)
{
if(l==r)
{
if(rd()&1) s[o].wb[2-(l&1)]=1,s[o].las=2-(l&1);
else s[o].wb[0]=1;
return;
}
bui(lc,l,mid),bui(rc,mid+1,r);
s[o]=ad(s[lc],s[rc]);
}
void modif(int o,int l,int r,int lx)
{
if(l==r)
{
if(s[o].las) s[o].wb[2-(l&1)]=s[o].las=0,s[o].wb[0]=1;
else s[o].wb[2-(l&1)]=1,s[o].las=2-(l&1),s[o].wb[0]=0;
return;
}
if(lx<=mid) modif(lc,l,mid,lx);
else modif(rc,mid+1,r,lx);
s[o]=ad(s[lc],s[rc]);
}
node quer(int o,int l,int r,int ll,int rr)
{
if(ll<=l&&r<=rr) return s[o];
node a,b;
if(ll<=mid) a=quer(lc,l,mid,ll,rr);
if(rr>mid) b=quer(rc,mid+1,r,ll,rr);
return ad(a,b);
}
int n,m;
LL ans; int main()
{
n=rd(),m=rd();
bui(1,1,n);
while(m--)
{
int op=rd();
if(op&1) modif(1,1,n,rd());
else
{
ans=0;
int l=rd(),r=rd();
nw=quer(1,1,n,l,r);++nw.wb[0];
ans=1ll*nw.wb[0]*(nw.wb[0]-1)/2+1ll*nw.wb[1]*(nw.wb[1]-1)/2+1ll*nw.wb[2]*(nw.wb[2]-1)/2;
printf("%lld\n",ans);
}
}
return 0;
}

Wannafly挑战赛17D 01序列2的更多相关文章

  1. wannafly 17D 01序列2

    水题. 假设有两个二进制数a,b,c=a+b(a,b拼接起来) 那么显然如果b长度为偶数\(c\mod 3=(b\mod 3+a\mod 3)\mod 3\) 否则\(c\mod 3=(b\mod 3 ...

  2. Wannafly挑战赛27

    Wannafly挑战赛27 我打的第一场$Wannafly$是第25场,$T2$竟然出了一个几何题?而且还把我好不容易升上绿的$Rating$又降回了蓝名...之后再不敢打$Wannafly$了. 由 ...

  3. Wannafly 挑战赛 19 参考题解

    这一次的 Wannafly 挑战赛题目是我出的,除了第一题,剩余的题目好像对大部分算法竞赛者来说好像都不是特别友好,但是个人感觉题目质量还是过得去的,下面是题目链接以及题解. [题目链接] Wanna ...

  4. Wannafly挑战赛22游记

    Wannafly挑战赛22游记 幸运的人都是相似的,不幸的人各有各的不幸. --题记 A-计数器 题目大意: 有一个计数器,计数器的初始值为\(0\),每次操作你可以把计数器的值加上\(a_1,a_2 ...

  5. Wannafly挑战赛18 E 极差(线段树、单调栈)

    Wannafly挑战赛18 E 极差 题意 给出三个长度为n的正整数序列,一个区间[L,R]的价值定义为:三个序列中,这个区间的极差(最大值与最小值之差)的乘积. 求所有区间的价值之和.答案对\(2^ ...

  6. Wannafly挑战赛21:C - 大水题

    链接:Wannafly挑战赛21:C - 大水题 题意: 现在给你N个正整数ai,每个数给出一“好数程度” gi(数值相同但位置不同的数之间可能有不同的好数程度).对于在 i 位置的数,如果有一在j位 ...

  7. Wannafly挑战赛5 A珂朵莉与宇宙 前缀和+枚举平方数

    Wannafly挑战赛5 A珂朵莉与宇宙 前缀和+枚举平方数 题目描述 给你一个长为n的序列a,有n*(n+1)/2个子区间,问这些子区间里面和为完全平方数的子区间个数 输入描述: 第一行一个数n 第 ...

  8. Wannafly挑战赛13 zzf的好矩阵 题解 答案解释

    Wannafly挑战赛13 zzf的好矩阵 题解 文章目录 Wannafly挑战赛13 zzf的好矩阵 题解 分析 结论1 结论2 结论3 C数组对应带子说明 空白长度论述 后续黑色长度论述 能&qu ...

  9. Wannafly挑战赛25游记

    Wannafly挑战赛25游记 A - 因子 题目大意: 令\(x=n!(n\le10^{12})\),给定一大于\(1\)的正整数\(p(p\le10000)\)求一个\(k\)使得\(p^k|x\ ...

随机推荐

  1. Python中print/format字符串格式化实例

    Python 字符串格式化使用 "字符 %格式1 %格式2 字符"%(变量1,变量2),%格式表示接受变量的类型.简单的使用例子如下 # 例:字符串格式化Name = '17jo' ...

  2. jquery添加刪除

    創建元素的方法:jquery.javascript/dom,html/text var txt1="<p>Text.</p>";               ...

  3. spring cloud实战与思考(一) spring config全局配置方案设计

    “spring cloud”的配置中心工具“spring cloud config”提供了分布式系统配置文件集中管理解决方案.该工具功能强大,实现也很简单.网上可以搜索到很多开发教程和用例.本文并不是 ...

  4. selenium之批量执行测试用例

    把写好的测试用例放在指定目录下,使用discover函数扫描该目录,并根据关键字自动筛选需要执行的用例.本例使用Python3.6版本. # 遍历指定目录,批量执行测试用例 import unitte ...

  5. Ubuntu 16.04安装Maven

    此篇为http://www.cnblogs.com/EasonJim/p/7139275.html的分支页. 前提:必须正确安装JDK. 一.通过二进制包(tar.gz)安装 下载: 进入下载列表:h ...

  6. HDU1069 最长上升子序列

    emm....矩形嵌套 还记得吗....就是它... 直接贴代码了.... import java.util.ArrayList; import java.util.Arrays; import ja ...

  7. LCT模板(指针版)

    本来是想做THUWC2017的泰勒展开xLCT题的-- 然后觉得数组写很麻烦-- 然后就决定挑战指针版-- 然后写得全是BUG-- 与BUG鏖战三千年后,有了这个指针版LCT板子! #include ...

  8. unity开源移动库iTween使用完整Demo

    public Vector3[] paths; // Use this for initialization void Start () { paths = ] { , , ), , , -) }; ...

  9. ASP:当 request.cookies 发生 Microsoft VBScript 运行时错误 (0x800A000D) 类型不匹配: '[string:

    昨天当一个客户告诉我,登录后看不到图片的时候,我还不相信,因为我的浏览器测试发现一切正常. 通过QQ远程协助后,我才发现服务器端真的报错: Microsoft VBScript 运行时错误 (0x80 ...

  10. vijos1543(极值问题)解题报告

    (n^2-m*n-m^2)^2=1 是齐次多项式,设n>=m,n=m+t(t>=0). n^2-m*n-m^2=t^2-m*t-m^2 所以(t^2-m*t-m^2)^2=1. 如果n,m ...