Prometheus监控学习笔记之解读prometheus监控kubernetes的配置文件
0x00 概述
Prometheus 是一个开源和社区驱动的监控&报警&时序数据库的项目。来源于谷歌BorgMon项目。现在最常见的Kubernetes容器管理系统中,通常会搭配Prometheus进行监控。主要监控:
- Node:如主机CPU,内存,网络吞吐和带宽占用,磁盘I/O和磁盘使用等指标。node-exporter采集。
- 容器关键指标:集群中容器的CPU详细状况,内存详细状况,Network,FileSystem和Subcontainer等。通过cadvisor采集。
- Kubernetes集群上部署的应用:监控部署在Kubernetes集群上的应用。主要是pod,service,ingress和endpoint。通过black-box和kube-apiserver的接口采集。
prometheus自身提供了一些资源的自动发现功能,下面是我从官方github上截图,罗列了目前提供的资源发现:
由上图可知prometheus自身提供了自动发现kubernetes的监控目标的功能。相应,配置文件官方也提供了一份,今天我们就解读一下该配置文件。
0x01 配置文件解读
首先直接上官方的配置文件:
# A scrape configuration for running Prometheus on a Kubernetes cluster.
# This uses separate scrape configs for cluster components (i.e. API server, node)
# and services to allow each to use different authentication configs.
#
# Kubernetes labels will be added as Prometheus labels on metrics via the
# `labelmap` relabeling action.
#
# If you are using Kubernetes 1.7.2 or earlier, please take note of the comments
# for the kubernetes-cadvisor job; you will need to edit or remove this job. # Scrape config for API servers.
#
# Kubernetes exposes API servers as endpoints to the default/kubernetes
# service so this uses `endpoints` role and uses relabelling to only keep
# the endpoints associated with the default/kubernetes service using the
# default named port `https`. This works for single API server deployments as
# well as HA API server deployments.
scrape_configs:
- job_name: 'kubernetes-apiservers' kubernetes_sd_configs:
- role: endpoints # Default to scraping over https. If required, just disable this or change to
# `http`.
scheme: https # This TLS & bearer token file config is used to connect to the actual scrape
# endpoints for cluster components. This is separate to discovery auth
# configuration because discovery & scraping are two separate concerns in
# Prometheus. The discovery auth config is automatic if Prometheus runs inside
# the cluster. Otherwise, more config options have to be provided within the
# <kubernetes_sd_config>.
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
# If your node certificates are self-signed or use a different CA to the
# master CA, then disable certificate verification below. Note that
# certificate verification is an integral part of a secure infrastructure
# so this should only be disabled in a controlled environment. You can
# disable certificate verification by uncommenting the line below.
#
# insecure_skip_verify: true
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token # Keep only the default/kubernetes service endpoints for the https port. This
# will add targets for each API server which Kubernetes adds an endpoint to
# the default/kubernetes service.
relabel_configs:
- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
action: keep
regex: default;kubernetes;https # Scrape config for nodes (kubelet).
#
# Rather than connecting directly to the node, the scrape is proxied though the
# Kubernetes apiserver. This means it will work if Prometheus is running out of
# cluster, or can't connect to nodes for some other reason (e.g. because of
# firewalling).
- job_name: 'kubernetes-nodes' # Default to scraping over https. If required, just disable this or change to
# `http`.
scheme: https # This TLS & bearer token file config is used to connect to the actual scrape
# endpoints for cluster components. This is separate to discovery auth
# configuration because discovery & scraping are two separate concerns in
# Prometheus. The discovery auth config is automatic if Prometheus runs inside
# the cluster. Otherwise, more config options have to be provided within the
# <kubernetes_sd_config>.
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token kubernetes_sd_configs:
- role: node relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- target_label: __address__
replacement: kubernetes.default.svc:443
- source_labels: [__meta_kubernetes_node_name]
regex: (.+)
target_label: __metrics_path__
replacement: /api/v1/nodes/${1}/proxy/metrics # Scrape config for Kubelet cAdvisor.
#
# This is required for Kubernetes 1.7.3 and later, where cAdvisor metrics
# (those whose names begin with 'container_') have been removed from the
# Kubelet metrics endpoint. This job scrapes the cAdvisor endpoint to
# retrieve those metrics.
#
# In Kubernetes 1.7.0-1.7.2, these metrics are only exposed on the cAdvisor
# HTTP endpoint; use "replacement: /api/v1/nodes/${1}:4194/proxy/metrics"
# in that case (and ensure cAdvisor's HTTP server hasn't been disabled with
# the --cadvisor-port=0 Kubelet flag).
#
# This job is not necessary and should be removed in Kubernetes 1.6 and
# earlier versions, or it will cause the metrics to be scraped twice.
- job_name: 'kubernetes-cadvisor' # Default to scraping over https. If required, just disable this or change to
# `http`.
scheme: https # This TLS & bearer token file config is used to connect to the actual scrape
# endpoints for cluster components. This is separate to discovery auth
# configuration because discovery & scraping are two separate concerns in
# Prometheus. The discovery auth config is automatic if Prometheus runs inside
# the cluster. Otherwise, more config options have to be provided within the
# <kubernetes_sd_config>.
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token kubernetes_sd_configs:
- role: node relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- target_label: __address__
replacement: kubernetes.default.svc:443
- source_labels: [__meta_kubernetes_node_name]
regex: (.+)
target_label: __metrics_path__
replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor # Scrape config for service endpoints.
#
# The relabeling allows the actual service scrape endpoint to be configured
# via the following annotations:
#
# * `prometheus.io/scrape`: Only scrape services that have a value of `true`
# * `prometheus.io/scheme`: If the metrics endpoint is secured then you will need
# to set this to `https` & most likely set the `tls_config` of the scrape config.
# * `prometheus.io/path`: If the metrics path is not `/metrics` override this.
# * `prometheus.io/port`: If the metrics are exposed on a different port to the
# service then set this appropriately.
- job_name: 'kubernetes-service-endpoints' kubernetes_sd_configs:
- role: endpoints relabel_configs:
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
action: replace
target_label: __scheme__
regex: (https?)
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
action: replace
target_label: __address__
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_service_name]
action: replace
target_label: kubernetes_name # Example scrape config for probing services via the Blackbox Exporter.
#
# The relabeling allows the actual service scrape endpoint to be configured
# via the following annotations:
#
# * `prometheus.io/probe`: Only probe services that have a value of `true`
- job_name: 'kubernetes-services' metrics_path: /probe
params:
module: [http_2xx] kubernetes_sd_configs:
- role: service relabel_configs:
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_probe]
action: keep
regex: true
- source_labels: [__address__]
target_label: __param_target
- target_label: __address__
replacement: blackbox-exporter.example.com:9115
- source_labels: [__param_target]
target_label: instance
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_service_name]
target_label: kubernetes_name # Example scrape config for probing ingresses via the Blackbox Exporter.
#
# The relabeling allows the actual ingress scrape endpoint to be configured
# via the following annotations:
#
# * `prometheus.io/probe`: Only probe services that have a value of `true`
- job_name: 'kubernetes-ingresses' metrics_path: /probe
params:
module: [http_2xx] kubernetes_sd_configs:
- role: ingress relabel_configs:
- source_labels: [__meta_kubernetes_ingress_annotation_prometheus_io_probe]
action: keep
regex: true
- source_labels: [__meta_kubernetes_ingress_scheme,__address__,__meta_kubernetes_ingress_path]
regex: (.+);(.+);(.+)
replacement: ${1}://${2}${3}
target_label: __param_target
- target_label: __address__
replacement: blackbox-exporter.example.com:9115
- source_labels: [__param_target]
target_label: instance
- action: labelmap
regex: __meta_kubernetes_ingress_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_ingress_name]
target_label: kubernetes_name # Example scrape config for pods
#
# The relabeling allows the actual pod scrape endpoint to be configured via the
# following annotations:
#
# * `prometheus.io/scrape`: Only scrape pods that have a value of `true`
# * `prometheus.io/path`: If the metrics path is not `/metrics` override this.
# * `prometheus.io/port`: Scrape the pod on the indicated port instead of the
# pod's declared ports (default is a port-free target if none are declared).
- job_name: 'kubernetes-pods' kubernetes_sd_configs:
- role: pod relabel_configs:
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
action: replace
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
target_label: __address__
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_pod_name]
action: replace
target_label: kubernetes_pod_name
当然该配置文件,是在prometheus部署在k8s中生效的,即in-cluster模式。
0x02 kubernetes-apiservers
该项主要是让prometheus程序可以访问kube-apiserver,进而进行服务发现。看一下服务发现的代码可以看出,主要服务发现:node,service,ingress,pod。
switch d.role {
case "endpoints":
var wg sync.WaitGroup for _, namespace := range namespaces {
elw := cache.NewListWatchFromClient(rclient, "endpoints", namespace, nil)
slw := cache.NewListWatchFromClient(rclient, "services", namespace, nil)
plw := cache.NewListWatchFromClient(rclient, "pods", namespace, nil)
eps := NewEndpoints(
log.With(d.logger, "role", "endpoint"),
cache.NewSharedInformer(slw, &apiv1.Service{}, resyncPeriod),
cache.NewSharedInformer(elw, &apiv1.Endpoints{}, resyncPeriod),
cache.NewSharedInformer(plw, &apiv1.Pod{}, resyncPeriod),
)
go eps.endpointsInf.Run(ctx.Done())
go eps.serviceInf.Run(ctx.Done())
go eps.podInf.Run(ctx.Done()) for !eps.serviceInf.HasSynced() {
time.Sleep(100 * time.Millisecond)
}
for !eps.endpointsInf.HasSynced() {
time.Sleep(100 * time.Millisecond)
}
for !eps.podInf.HasSynced() {
time.Sleep(100 * time.Millisecond)
}
wg.Add(1)
go func() {
defer wg.Done()
eps.Run(ctx, ch)
}()
}
wg.Wait()
case "pod":
var wg sync.WaitGroup
for _, namespace := range namespaces {
plw := cache.NewListWatchFromClient(rclient, "pods", namespace, nil)
pod := NewPod(
log.With(d.logger, "role", "pod"),
cache.NewSharedInformer(plw, &apiv1.Pod{}, resyncPeriod),
)
go pod.informer.Run(ctx.Done()) for !pod.informer.HasSynced() {
time.Sleep(100 * time.Millisecond)
}
wg.Add(1)
go func() {
defer wg.Done()
pod.Run(ctx, ch)
}()
}
wg.Wait()
case "service":
var wg sync.WaitGroup
for _, namespace := range namespaces {
slw := cache.NewListWatchFromClient(rclient, "services", namespace, nil)
svc := NewService(
log.With(d.logger, "role", "service"),
cache.NewSharedInformer(slw, &apiv1.Service{}, resyncPeriod),
)
go svc.informer.Run(ctx.Done()) for !svc.informer.HasSynced() {
time.Sleep(100 * time.Millisecond)
}
wg.Add(1)
go func() {
defer wg.Done()
svc.Run(ctx, ch)
}()
}
wg.Wait()
case "ingress":
var wg sync.WaitGroup
for _, namespace := range namespaces {
ilw := cache.NewListWatchFromClient(reclient, "ingresses", namespace, nil)
ingress := NewIngress(
log.With(d.logger, "role", "ingress"),
cache.NewSharedInformer(ilw, &extensionsv1beta1.Ingress{}, resyncPeriod),
)
go ingress.informer.Run(ctx.Done()) for !ingress.informer.HasSynced() {
time.Sleep(100 * time.Millisecond)
}
wg.Add(1)
go func() {
defer wg.Done()
ingress.Run(ctx, ch)
}()
}
wg.Wait()
case "node":
nlw := cache.NewListWatchFromClient(rclient, "nodes", api.NamespaceAll, nil)
node := NewNode(
log.With(d.logger, "role", "node"),
cache.NewSharedInformer(nlw, &apiv1.Node{}, resyncPeriod),
)
go node.informer.Run(ctx.Done()) for !node.informer.HasSynced() {
time.Sleep(100 * time.Millisecond)
}
node.Run(ctx, ch) default:
level.Error(d.logger).Log("msg", "unknown Kubernetes discovery kind", "role", d.role)
}
0x03 kubernetes-nodes
发现node以后,通过/api/v1/nodes/${1}/proxy/metrics来获取node的metrics。
0x04 kubernetes-cadvisor
cadvisor已经被集成在kubelet中,所以发现了node就相当于发现了cadvisor。通过 /api/v1/nodes/${1}/proxy/metrics/cadvisor采集容器指标。
0x05 kubernetes-services和kubernetes-ingresses
该两种资源监控方式差不多,都是需要安装black-box,然后类似于探针去定时访问,根据返回的http状态码来判定service和ingress的服务可用性。
PS:不过我自己在这里和官方的稍微有点区别,
- target_label: __address__
replacement: blackbox-exporter.example.com:9115
官方大致是需要我们要创建black-box 的ingress从外部访问,这样从效率和安全性都不是最合适的。所以我一般都是直接内部dns访问。如下
- target_label: __address__
replacement: blackbox-exporter.kube-system:9115
当然看源码可以发现,并不是所有的service和ingress都会健康监测,如果需要将服务进行健康监测,那么你部署应用的yaml文件加一些注解。例如:
对于service和ingress:
需要加注解:prometheus.io/scrape: 'true'
apiVersion: v1
kind: Service
metadata:
annotations:
prometheus.io/scrape: 'true'
name: prometheus-node-exporter
namespace: kube-system
labels:
app: prometheus
component: node-exporter
spec:
clusterIP: None
ports:
- name: prometheus-node-exporter
port: 9100
protocol: TCP
selector:
app: prometheus
component: node-exporter
type: ClusterIP
0x06 kubernetes-pods
对于pod的监测也是需要加注解:
- prometheus.io/scrape,为true则会将pod作为监控目标。
- prometheus.io/path,默认为/metrics
- prometheus.io/port , 端口
所以看到此处可以看出,该job并不是监控pod的指标,pod已经通过前面的cadvisor采集。此处是对pod中应用的监控。写过exporter的人应该对这个概念非常清楚。通俗讲,就是你pod中的应用提供了prometheus的监控功能,加上对应的注解,那么该应用的metrics会定时被采集走。
0x07 kubernetes-service-endpoints
对于服务的终端节点,也需要加注解:
- prometheus.io/scrape,为true则会将pod作为监控目标。
- prometheus.io/path,默认为/metrics
- prometheus.io/port , 端口
- prometheus.io/scheme 默认http,如果为了安全设置了https,此处需要改为https
这个基本上同上的。采集service-endpoints的metrics。
个人认为:如果某些部署应用只有pod没有service,那么这种情况只能在pod上加注解,通过kubernetes-pods采集metrics。如果有service,那么就无需在pod加注解了,直接在service上加即可。毕竟service-endpoints最终也会落到pod上。
0x08 总结
配置项总结
- kubernetes-service-endpoints和kubernetes-pods采集应用中metrics,当然并不是所有的都提供了metrics接口。
- kubernetes-ingresses 和kubernetes-services 健康监测服务和ingress健康的状态
- kubernetes-cadvisor 和 kubernetes-nodes,通过发现node,监控node 和容器的cpu等指标
自动发现源码
参考client-go和prometheus自动发现k8s,这种监听k8s集群中资源的变化,使用informer实现,不要轮询kube-apiserver接口。
该配置文件需要部署一些组件来支持prometheus对k8s的监控,例如black-exporter。因为要自动发现,获取集群的一些信息,所以也要做rbac的授权。具体参考:
github
参考
Prometheus监控学习笔记之解读prometheus监控kubernetes的配置文件的更多相关文章
- Hadoop学习笔记(2) ——解读Hello World
Hadoop学习笔记(2) ——解读Hello World 上一章中,我们把hadoop下载.安装.运行起来,最后还执行了一个Hello world程序,看到了结果.现在我们就来解读一下这个Hello ...
- Prometheus监控学习笔记之教程推荐
最近学习K8S和基于容器的监控,发现了如下的教程质量不错,记录下来以备参考 1. K8S最佳实战(包括了K8S的Prometheus监控和EFK日志搜集) https://jimmysong.io/k ...
- Prometheus监控学习笔记之全面学习Prometheus
0x00 概述 Prometheus是继Kubernetes后第2个正式加入CNCF基金会的项目,容器和云原生领域事实的监控标准解决方案.在这次分享将从Prometheus的基础说起,学习和了解Pro ...
- Prometheus监控学习笔记之Prometheus的Relabel,SD以及Federation功能
0x00 k8s 的监控设计 k8s 默认以及推荐的监控体系是它自己的一套东西:Heapster + cAdvisor + Influxdb + Grafana,具体可以看 这里 . 包括 k8s 自 ...
- Prometheus监控学习笔记之PromQL 内置函数
概述 Prometheus 提供了其它大量的内置函数,可以对时序数据进行丰富的处理.某些函数有默认的参数,例如:year(v=vector(time()) instant-vector).其中参数 v ...
- Prometheus监控学习笔记之prometheus的federation机制
0x00 概述 有时候对于一个公司,k8s集群或是所谓的caas只是整个技术体系的一部分,往往这个时候监控系统不仅仅要k8s集群以及k8s中部署的应用,而且要监控传统部署的项目.也就是说整个监控系统不 ...
- Prometheus监控学习笔记之Prometheus不完全避坑指南
0x00 概述 Prometheus 是一个开源监控系统,它本身已经成为了云原生中指标监控的事实标准,几乎所有 k8s 的核心组件以及其它云原生系统都以 Prometheus 的指标格式输出自己的运行 ...
- Prometheus监控学习笔记之360基于Prometheus的在线服务监控实践
0x00 初衷 最近参与的几个项目,无一例外对监控都有极强的要求,需要对项目中各组件进行详细监控,如服务端API的请求次数.响应时间.到达率.接口错误率.分布式存储中的集群IOPS.节点在线情况.偏移 ...
- Prometheus监控学习笔记之Prometheus普罗米修斯监控入门
0x00 概述 视频讲解通过链接网易云课堂·IT技术快速入门学院进入,更多关于Prometheus的文章. Prometheus是最近几年开始流行的一个新兴监控告警工具,特别是kubernetes的流 ...
随机推荐
- 解决ScrollView中包含ListView,导致ListView显示不全
ScrollView 中包含 ListView 的问题 : ScrollView和ListView会冲突,会导致ListView显示不全 <?xml version="1.0" ...
- 【LeetCode每天一题】Median of Two Sorted Arrays(两数组中的中位数)
There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the tw ...
- ELK(下)
ELK架构图: 架构图一: 这是最简单的一种ELK架构方式.优点是搭建简单,易于上手.缺点是Logstash耗资源较大,运行占用CPU和内存高.另外没有消息队列缓存,存在数据丢失隐患. 此架构由Log ...
- H5缩放效果的问题和缓存问题
https://segmentfault.com/q/1010000000305316 http://blog.csdn.net/hudashi/article/details/50963585 四. ...
- 从零开始一起学习SLAM | SLAM有什么用?
SLAM是 Simultaneous Localization And Mapping的 英文首字母组合,一般翻译为:同时定位与建图.同时定位与地图构建. 「同时定位与地图构建」这几个词,乍一听起来非 ...
- Ireport第一张web项目报表。
原先项目里面的统计分析报表都是和普通的系统页面一样开发的,SSM架构,从数据库一层一层往前面传数据,最后通过jsp表现出来,这次在领导的建议下使用IReport进行报表开发,果然还是要使用工具啊,社会 ...
- Struts2自定义Field级别的错误提示信息
自定义Field级别的错误提示信息步骤: 在action包中新建一个以Action命名的properties文件,如:RegisterAction.properties 2. 然后在该属性文件中指定每 ...
- word论文文献引用上标括号
参考 http://jingyan.baidu.com/article/c45ad29c310734051753e20d.html 在插入参考文献引用的尾注时,默认为上标数据且没有中括号.现在要统一加 ...
- 16. 3Sum Closest(双指针)
Given an array nums of n integers and an integer target, find three integers in nums such that the s ...
- html5-超级链接
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8&qu ...