BFS广度优先 vs DFS深度优先 for Binary Tree
https://www.geeksforgeeks.org/bfs-vs-dfs-binary-tree/
What are BFS and DFS for Binary Tree?
A Tree is typically traversed in two ways:
- Breadth First Traversal (Or Level Order Traversal)
- Depth First Traversals
- Inorder Traversal (Left-Root-Right)
- Preorder Traversal (Root-Left-Right)
- Postorder Traversal (Left-Right-Root)

BFS and DFSs of above Tree Breadth First Traversal : 1 2 3 4 5 Depth First Traversals:
Preorder Traversal : 1 2 4 5 3
Inorder Traversal : 4 2 5 1 3
Postorder Traversal : 4 5 2 3 1
Why do we care?
There are many tree questions that can be solved using any of the above four traversals. Examples of such questions are size, maximum, minimum, print left view, etc.
Is there any difference in terms of Time Complexity?
All four traversals require O(n) time as they visit every node exactly once.
Is there any difference in terms of Extra Space?
There is difference in terms of extra space required.
- Extra Space required for Level Order Traversal is O(w) where w is maximum width of Binary Tree. In level order traversal, queue one by one stores nodes of different level.
- Extra Space required for Depth First Traversals is O(h) where h is maximum height of Binary Tree. In Depth First Traversals, stack (or function call stack) stores all ancestors of a node.
Maximum Width of a Binary Tree at depth (or height) h can be 2h where h starts from 0. So the maximum number of nodes can be at the last level. And worst case occurs when Binary Tree is a perfect Binary Tree with numbers of nodes like 1, 3, 7, 15, …etc. In worst case, value of 2h is Ceil(n/2).
Height for a Balanced Binary Tree is O(Log n). Worst case occurs for skewed歪斜的 tree and worst case height becomes O(n).
So in worst case extra space required is O(n) for both. But worst cases occur for different types of trees.
It is evident from above points that extra space required for Level order traversal is likely to be more when tree is more balanced and extra space for Depth First Traversal is likely to be more when tree is less balanced.
How to Pick One?
- Extra Space can be one factor (Explained above)
- Depth First Traversals are typically recursive and recursive code requires function call overheads.
- The most important points is, BFS starts visiting nodes from root while DFS starts visiting nodes from leaves. So if our problem is to search something that is more likely to closer to root, we would prefer BFS. And if the target node is close to a leaf, we would prefer DFS.
Exercise:
Which traversal should be used to print leaves of Binary Tree and why?
Which traversal should be used to print nodes at k’th level where k is much less than total number of levels?
This article is contributed by Dheeraj Gupta. This
Please write comments if you find anything incorrect, or you want to
share more information about the topic discussed above
二叉树的C#定义
public class TreeNode
{
public int val;
public TreeNode left;
public TreeNode right; public TreeNode(int x)
{
val = x;
}
}
广度优先的遍历C#实现
public IList<IList<int>> LevelOrder(TreeNode root)
{
IList<IList<int>> result = new List<IList<int>>();
Queue<TreeNode> queue=new Queue<TreeNode>();
Enqueue(queue, root);
while (queue.Count > )
{
var node = queue.Dequeue();
Console.WriteLine(node.val);
Output.WriteLine(node.val.ToString());
Enqueue(queue, node.left);
Enqueue(queue, node.right);
} return result;
} private void Enqueue(Queue<TreeNode> tempQueue, TreeNode node)
{
if (node != null)
{
tempQueue.Enqueue(node);
}
}
BFS广度优先 vs DFS深度优先 for Binary Tree的更多相关文章
- DFS+BFS(广度优先搜索弥补深度优先搜索遍历漏洞求合格条件总数)--09--DFS+BFS--蓝桥杯剪邮票
题目描述 如下图, 有12张连在一起的12生肖的邮票.现在你要从中剪下5张来,要求必须是连着的.(仅仅连接一个角不算相连) 比如,下面两张图中,粉红色所示部分就是合格的剪取. 请你计算,一共有多少 ...
- 107. Binary Tree Level Order Traversal II
题目: Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from ...
- 【LeetCode】102. Binary Tree Level Order Traversal 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 DFS BFS 日期 题目描述 Given a bi ...
- 【leetcode❤python】102. Binary Tree Level Order Traversal
#-*- coding: UTF-8 -*-#广度优先遍历# Definition for a binary tree node.# class TreeNode(object):# def ...
- 【Binary Tree Right Side View 】cpp
题目: Given a binary tree, imagine yourself standing on the right side of it, return the values of the ...
- LeetCode Binary Tree Right Side View (DFS/BFS)
题意: 给一棵二叉树,要求收集每层的最后一个节点的值.按从顶到底装进vector返回. 思路: BFS比较简单,先遍历右孩子就行了. /** * Definition for a binary tre ...
- HDU 1241 Oil Deposits DFS(深度优先搜索) 和 BFS(广度优先搜索)
Oil Deposits Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...
- HDU 4707 Pet(DFS(深度优先搜索)+BFS(广度优先搜索))
Pet Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissio ...
- (二叉树 BFS DFS) leetcode 104. Maximum Depth of Binary Tree
Given a binary tree, find its maximum depth. The maximum depth is the number of nodes along the long ...
随机推荐
- Vivado的安装程序没反应怎么办
在Windows操作系统上,在安装Vivado的时候会遇到双击xsetup.exe没有反应的情况,即使是用管理员权限再加上设置兼容模式也没有任何效果,且此问题有可能在多个版本上都存在,包括最新的201 ...
- 环形数组 最大子段和 dp
题目链接:https://nanti.jisuanke.com/t/36118 环形数组的连续最大子段和,有两种情况. 1.最大和的这个子段没有包含头尾.所以直接dp[i] = max(dp[i-1] ...
- eclipse设置字体_字符编码_快捷键
eclipse设置字体.字符编码.快捷键 1.设置字体: preferences->general->appearnce->colors and fonts-->basic-- ...
- Sqoop与HDFS、Hive、Hbase等系统的数据同步操作
Sqoop与HDFS结合 下面我们结合 HDFS,介绍 Sqoop 从关系型数据库的导入和导出. Sqoop import 它的功能是将数据从关系型数据库导入 HDFS 中,其流程图如下所示. 我们来 ...
- Spring SpringBoot和SpringCloud的关系
Spring SpringBoot和SpringCloud的关系 Spring Cloud 是完全基于 Spring Boot 而开发,Spring Cloud 利用 Spring Boot 特性整合 ...
- 新建git并将本地代码上传到分支
1 查看远程分支 $ git branch -a * br-2.1.2.2 master remotes/origin/HEAD -> origin/master remotes/origin/ ...
- AtCoder Beginner Contest 085(ABCD)
A - Already 2018 题目链接:https://abc085.contest.atcoder.jp/tasks/abc085_a Time limit : 2sec / Memory li ...
- 设置PyCharm创建文件时自动添加头文件
找到该路径并添加以下信息 File->settings->Editor->File and Code Templates->Python Script #!/usr/bin/ ...
- Struts2 的 配置
三.Struts2配置 Struts2的核心配置文件 1.名称和位置是固定的 在src下struts.xml 2.Struts根标签 Package Action Result Action Pa ...
- Docker学习笔记之为容器配置网络
0x00 概述 在互联网时代,网络已经成为绝大多数应用进行数据交换的主要通道,Docker 作为集群部署的利器,在网络支持上也下了许多功夫.功能丰富和强大,并不代表使用复杂,在 Docker 的封装下 ...