Face Aging with Conditional Generative Adversarial Network 论文笔记
Face Aging with Conditional Generative Adversarial Network 论文笔记
2017.02.28
Motivation:
本文是要根据最新的条件产生式对抗玩网络(CGANs)来完成,人类老年照片的估计。
主要是做了一下两个事情:
1. 根据年龄阶段,进行照片的老年估计,用 acGAN 网络来完成;
2. 提出一种 隐层变量优化算法(latent vector optimization approach),允许 acGAN 可以重构输入人脸图像,与此同时,保留原本人脸的个体。

猛地一看,这个流程图,其实是挺迷惑人的,我感觉。
按照上述流程图,来看看作者想要达到什么效果:
1. 首先给定一张输入图像 x ,假设年龄记为 y0,找到一个最优的隐层向量 z*,使得可以产生一个重构的人脸 x-,尽可能的和初始的人脸尽可能的相似。
2. 给定一个目标年龄 $y_{target}$,产生一张结果人脸图像 $x_{target} = G(z*, y_{target})$,简单的完成年龄的切换。
其实,这个文章是做了这么一个事情:
结合 条件产生式对抗网络 和 隐层向量之间的loss 来完成整个网络的训练。
首先,作者是在给定一张图像的基础上,进行人脸的老化估计。作者这里考虑了 输入随机 noise 对最终结果的影响。
自己随机的产生了一堆 noise Z,然后在条件--->> 年龄这个标签的条件下,利用对抗网络生成许多伪造的 image ;
由于是自己根据 noise z 生成的,这里相当于是 已经有了 groundtruth,我们训练一个 encode 网络,将输入的人脸图像,估计其 编码后的 向量 z* ;
通过不断地训练,可以得到 能够预测图像隐层编码的网络 Encoder 。
其次,我们文章的一个很重要的卖点在于,可以保持生成图像和输入图像是 相同的身份,是同一个人,那么,这里是怎么做到的呢?
因为我们知道,GAN 生成的数据,一般都是看起来有模有样,但是实际上是很难控制输出什么的。
本文之所以可以做到这一点,就是因为,在生成图像的过程中,加入了隐层变量 z 之间的 loss,即:

这样在生成图像过程中,考虑生成的图像和原始输入图像之间的隐层向量 z 之间的差距,尽可能的小,就可以将这个事情 model 的非常好!
总结起来就是,在生成图像的过程中,首先学习一个编码网络,可以预测图像的隐层变量。然后在 GAN 过程中,加入这个 loss,作为衡量输出图像质量好坏的一个标准。
这样,生成的人脸图像,不但可以尽可能的和原始图像保持是同一个人,另外,又可以,在条件 年龄的基础上,生成对应年龄阶段的人脸图像。
大致就是这么个流程。有任何疑问,请发邮件与我联系! wangxiaocvpr@foxmail.com
Face Aging with Conditional Generative Adversarial Network 论文笔记的更多相关文章
- 论文阅读:Single Image Dehazing via Conditional Generative Adversarial Network
Single Image Dehazing via Conditional Generative Adversarial Network Runde Li∗ Jinshan Pan∗ Zechao L ...
- StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 本文将利 ...
- 论文笔记之:Conditional Generative Adversarial Nets
Conditional Generative Adversarial Nets arXiv 2014 本文是 GANs 的拓展,在产生 和 判别时,考虑到额外的条件 y,以进行更加"激烈 ...
- 论文阅读之:Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network 2016.10.23 摘要: ...
- ASRWGAN: Wasserstein Generative Adversarial Network for Audio Super Resolution
ASEGAN:WGAN音频超分辨率 这篇文章并不具有权威性,因为没有发表,说不定是外国的某个大学的毕业设计,或者课程结束后的作业.或者实验报告. CS230: Deep Learning, Sprin ...
- Speech Super Resolution Generative Adversarial Network
博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/10874993.html 论文作者:Sefik Emre Eskimez , Kazuhito K ...
- 生成对抗网络(Generative Adversarial Network)阅读笔记
笔记持续更新中,请大家耐心等待 首先需要大概了解什么是生成对抗网络,参考维基百科给出的定义(https://zh.wikipedia.org/wiki/生成对抗网络): 生成对抗网络(英语:Gener ...
- GAN Generative Adversarial Network 生成式对抗网络-相关内容
参考: https://baijiahao.baidu.com/s?id=1568663805038898&wfr=spider&for=pc Generative Adversari ...
- Conditional Generative Adversarial Nets
目录 引 主要内容 代码 Mirza M, Osindero S. Conditional Generative Adversarial Nets.[J]. arXiv: Learning, 2014 ...
随机推荐
- Widget Factory (高斯消元解线性方程组)
The widget factory produces several different kinds of widgets. Each widget is carefully built by a ...
- 缓存 Memached
https://github.com/enyim/EnyimMemcached http://www.newasp.net/soft/63735.html#downloaded/ http://blo ...
- Linux 系统管理命令
1,uanme 查看是什么系统 uname - r 查看系统内核版本 2 cat /proc/cpuinfo 查看cpu 信息 3 cat /proc/meminfo 查看内存信息 4 date 查看 ...
- sklearn异常检测demo
sklearn 异常检测demo代码走读 # 0基础学python,读代码学习python组件api import time import numpy as np import matplotlib ...
- 关于SqlCommand对象的2个方法:ExecuteNonQuery 方法和ExecuteScalar方法
1.SqlCommand.ExecuteNonQuery 方法 对连接执行 Transact-SQL 语句并返回受影响的行数. 语法:public override int ExecuteNonQue ...
- Linux基础命令---调整程序优先级renice
renice renice指令可以重新调整程序运行的优先级,可以通过进程id.用户id.组id来修改优先级.修改组的等级,影响组内所有用户的所有进程优先级:修改用户等级,影响该用户的所有进程优先级.除 ...
- 阿里云自定义镜像可以免费保存,ECS实例到期后自定义镜像手动快照不会被删除
阿里云自定义镜像可以免费保存,ECS实例到期后自定义镜像手动快照不会被删除 4. ECS 实例释放后,自定义镜像是否还存在? 存在. 5. ECS 实例释放后,快照是否还存在? 保留手动快照,清除自动 ...
- oracle数据库基础功能
一.oracle基本常用的数据类型 varchar(长度) 字符串char(长度) 字符number(x,y) x表示总位数 y表示保留小数点后几位数 eg面试题:number(5,3)最大的数是99 ...
- 利用webpack手动构建vue工程
一 创建一个文件夹,在文件夹中打开命令行执行:$npm install 创建一个package文件 ,可以先忽略作者等信息: 二 安装webpack依赖包(根据需要安装) //全局安装 ...
- Doing Homework HDU - 1074
Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Every ...