BZOJ 5381 or & Codeforces 623E Transforming Sequence DP+NTT
两道题题意都是一样的 不过\(CF\)的模数是\(10^9+7\)
很简单的分析发现\(A_i\)项一定要有一个之前没有出现过的二进制位才能满足条件 考虑\(DP\)来做
设\(f_{i,j}\)表示\(i\)个数用了二进制位上的\(j\)个位置后满足要求的方案数
转移式为:\(f_{a+b,j}=\binom{j}{k} f_{a,k} \times (2^k)^{b}f_{b,j-k}\)
即前\(a\)个数用去\(k\)位 后\(b\)个数用去\(j-k\)位 并且对于之前用过的\(k\)位也可以随意取
上式可化为:\(\frac{ f_{a+b , j } } { j \! } = \frac { f_{ a , k } (2^ k ) ^ b} { k \! } \times \frac{ f_{ b, j - k } } { ( j - k ) \! }\)
这个式子很显然可以\(NTT\)来搞
实现的时候写成类似快速幂的形式就可以过了 对于\(CF\)的模数 可以写写一个任意模数\(FFT\) 算\(7\)次就可以了(我的精度简直醉了)
\(BZOJ5381\)
#include<bits/stdc++.h>
using namespace std;
#define FO(x) {freopen(#x".in","r",stdin);freopen(#x".out","w",stdout);}
#define pa pair<int,int>
#define mod 998244353
#define ll long long
#define mk make_pair
#define pb push_back
#define fi first
#define se second
#define cl(x) memset(x,0,sizeof x)
#ifdef Devil_Gary
#define bug(x) cout<<(#x)<<" "<<(x)<<endl
#define debug(...) fprintf(stderr, __VA_ARGS__)
#else
#define bug(x)
#define debug(...)
#endif
const int INF = 0x7fffffff;
const int N=1e5+5;
int M,l,n,m,A[N],B[N],r[N];
int k,b,f[N],g[N],c[N],fac[N],inv[N],ans;
int poww(int x,int y){
int ans=1;
while(y){
if(y&1) ans=(ll)ans*x%mod;
y>>=1,x=(ll)x*x%mod;
}
return ans;
}
void NTT(int*A,int f){
for(int i=0;i<=M;i++) if(r[i]>i) swap(A[i],A[r[i]]);
for(int i=1;i<M;i<<=1){
int wn=poww(3,(mod-1)/i/2);
if(f==-1) wn=poww(wn,mod-2);
for(int j=0;j<M;j+=(i<<1)){
int w=1;
for(int k=0;k<i;k++,w=(ll)w*wn%mod){
int x=A[j+k],y=(ll)w*A[i+j+k]%mod;
A[j+k]=(x+y)%mod,A[i+j+k]=(x+mod-y)%mod;
}
}
}
if(f==-1){
// reverse(A+1,A+M);
int inv=poww(M,mod-2);
for(int i=0;i<=M;i++) A[i]=(ll)A[i]*inv%mod;
}
}
void init(){
fac[0]=fac[1]=inv[0]=inv[1]=1;
for(int i=2;i<N;i++) fac[i]=(ll)fac[i-1]*i%mod;
for(int i=2;i<N;i++) inv[i]=(ll)(mod-mod/i)*inv[mod%i]%mod;
for(int i=2;i<N;i++) inv[i]=(ll)inv[i]*inv[i-1]%mod;
}
void NTT_MOD(int*a,int*b,int n){
cl(A),cl(B);
for(int i=0;i<=n;i++) A[i]=a[i],B[i]=b[i];
NTT(A,1),NTT(B,1);
for(int i=0;i<M;i++) A[i]=(ll)A[i]*B[i]%mod;
NTT(A,-1);
for(int i=0;i<=n;i++) a[i]=A[i];
}
void work(int*a,int*b,int n,int p){
int t=1;
cl(c);
for(int i=0;i<=n;i++) c[i]=(ll)a[i]*t%mod,t=(ll)t*p%mod;
NTT_MOD(c,b,n);
memcpy(a,c,sizeof c);
}
int Calc(int n,int m){
return (ll)fac[n]*inv[m]%mod*inv[n-m]%mod;
}
int main(){
#ifdef Devil_Gary
freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
#endif
cin>>n>>k;
for(M=1;M<=k+k;M<<=1,l++);
for(int i=0;i<M;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
init(),g[0]=1,b=2;
for(int i=1;i<=k;i++) f[i]=inv[i];
while(n){
if(n&1) work(g,f,k,b);
n>>=1,work(f,f,k,b),b=(ll)b*b%mod;
}
for(int i=n;i<=k;i++) (ans+=(ll)g[i]*fac[i]%mod*Calc(k,i)%mod)%=mod;
printf("%d\n",ans);
}
\(CF623E\)
#include<bits/stdc++.h>
using namespace std;
#define FO(x) {freopen(#x".in","r",stdin);freopen(#x".out","w",stdout);}
#define pa pair<int,int>
#define mod 1000000007
#define ll long long
#define mk make_pair
#define pb push_back
#define fi first
#define se second
#define cl(x) memset(x,0,sizeof x)
#ifdef Devil_Gary
#define bug(x) cout<<(#x)<<" "<<(x)<<endl
#define debug(...) fprintf(stderr, __VA_ARGS__)
#else
#define bug(x)
#define debug(...)
#endif
const int INF = 0x7fffffff;
const int N=1e5+5;
struct Cp{
double x,y;
Cp (double _x=0,double _y=0) { x=_x,y=_y;}
Cp operator + (const Cp &ch){ return Cp(x+ch.x,y+ch.y); }
Cp operator - (const Cp &ch){ return Cp(x-ch.x,y-ch.y); }
Cp operator * (const Cp &ch){ return Cp(x*ch.x-y*ch.y,x*ch.y+y*ch.x); }
}A[N],B[N],C[N],D[N],w,w0,tmp,wi[16][65536];;
int M,l,r[N];
#define pi acos(-1.0)
void FFT(Cp *A,int f){
for(int i=0;i<M;i++) if(r[i]>i) swap(A[r[i]],A[i]);
int gg=0;
for(int i=1;i<M;i<<=1){
w.x=cos(pi/i),w.y=sin(pi/i)*f;
for(int j=0;j<M;j+=(i<<1)){
for(int k=0;k<i;k++){
w0=wi[gg][k],w0.y*=f;
Cp x=A[j+k],y=w0*A[i+j+k];
A[j+k]=x+y,A[i+j+k]=x-y;
}
}
gg++;
}
if(f==-1) for(int i=0;i<M;i++) A[i].x/=M;
}
ll n;
int k,b,f[N],g[N],fac[N],inv[N],ans;
void init(){
fac[0]=fac[1]=inv[0]=inv[1]=1;
for(int i=2;i<N;i++) fac[i]=(ll)fac[i-1]*i%mod;
for(int i=2;i<N;i++) inv[i]=(ll)(mod-mod/i)*inv[mod%i]%mod;
for(int i=2;i<N;i++) inv[i]=(ll)inv[i]*inv[i-1]%mod;
int k=0;
for(int i=2;i<=N;i<<=1){
for(int j=0;j<i;j++)wi[k][j]=Cp(cos(j*pi/(i/2)),sin(j*pi/(i/2)));
k++;
}
}
void FFT_MOD(int*a,int*b,int n){
cl(A),cl(B),cl(C),cl(D);
for(int i=0;i<M;i++){
A[i].x=a[i]>>15;
B[i].x=a[i]&32767;
C[i].x=b[i]>>15;
D[i].x=b[i]&32767;
}
FFT(A,1),FFT(B,1),FFT(C,1),FFT(D,1);
for(int i=0;i<M;i++){
tmp=A[i]*D[i]+B[i]*C[i];
A[i]=A[i]*C[i];
C[i]=B[i]*D[i];
B[i]=tmp;
}
FFT(A,-1),FFT(B,-1),FFT(C,-1),cl(a);
for(int i=0;i<=n;i++)a[i]=((llround(A[i].x)%mod<<30)+(llround(B[i].x)%mod<<15)+llround(C[i].x)%mod)%mod;
}
int c[N];
void work(int*a,int*b,int n,int p){
int t=1;
cl(c);
for(int i=0;i<=n;i++) c[i]=(ll)a[i]*t%mod,t=(ll)t*p%mod;
FFT_MOD(c,b,n);
memcpy(a,c,sizeof c);
}
int Calc(int n,int m){
return (ll)fac[n]*inv[m]%mod*inv[n-m]%mod;
}
int main(){
#ifdef Devil_Gary
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
cin>>n>>k;
if(n>k) return puts("0"),0;
for(M=1;M<=k+k;M<<=1,l++);
for(int i=0;i<M;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
init(),g[0]=1,b=2;
for(int i=1;i<=k;i++) f[i]=inv[i];
while(n){
if(n&1) work(g,f,k,b);
n>>=1,work(f,f,k,b),b=(ll)b*b%mod;
}
for(int i=n;i<=k;i++) (ans+=(ll)g[i]*fac[i]%mod*Calc(k,i)%mod)%=mod;
printf("%d\n",ans);
}
BZOJ 5381 or & Codeforces 623E Transforming Sequence DP+NTT的更多相关文章
- CodeForces 623E Transforming Sequence 动态规划 倍增 多项式 FFT 组合数学
原文链接http://www.cnblogs.com/zhouzhendong/p/8848990.html 题目传送门 - CodeForces 623E 题意 给定$n,k$. 让你构造序列$a( ...
- 【codeforces 623E】 Transforming Sequence
http://codeforces.com/problemset/problem/623/E (题目链接) 题意 长度为${n}$的满足前缀按位或为单调递增的${k}$位序列.要求每个位置为${[1, ...
- Codeforces 601B. Lipshitz Sequence(单调栈)
Codeforces 601B. Lipshitz Sequence 题意:,q个询问,每次询问给出l,r,求a数组[l,r]中所有子区间的L值的和. 思路:首先要观察到,斜率最大值只会出现在相邻两点 ...
- [Codeforces 1201D]Treasure Hunting(DP)
[Codeforces 1201D]Treasure Hunting(DP) 题面 有一个n*m的方格,方格上有k个宝藏,一个人从(1,1)出发,可以向左或者向右走,但不能向下走.给出q个列,在这些列 ...
- Codeforces Round #277 (Div. 2) E. LIS of Sequence DP
E. LIS of Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/486/pr ...
- Codeforces 5C Longest Regular Bracket Sequence(DP+括号匹配)
题目链接:http://codeforces.com/problemset/problem/5/C 题目大意:给出一串字符串只有'('和')',求出符合括号匹配规则的最大字串长度及该长度的字串出现的次 ...
- Codeforces 13C Sequence dp
题目链接:http://codeforces.com/problemset/problem/13/C 题意: 给定n长的序列 每次操作能够给每一个数++或-- 问最少须要几步操作使得序列变为非递减序列 ...
- Codeforces 13C Sequence --DP+离散化
题意:给出一个 n (1 <= n <= 5000)个数的序列 .每个操作可以把 n 个数中的某一个加1 或 减 1.问使这个序列变成非递减的操作数最少是多少 解法:定义dp[i][j]为 ...
- 【codeforces 623E】dp+FFT+快速幂
题目大意:用$[1,2^k-1]$之间的证书构造一个长度为$n$的序列$a_i$,令$b_i=a_1\ or\ a_2\ or\ ...\ or a_i$,问使得b序列严格递增的方案数,答案对$10^ ...
随机推荐
- ES系列九、ES优化聚合查询之深度优先和广度优先
1.优化聚合查询示例 假设我们现在有一些关于电影的数据集,每条数据里面会有一个数组类型的字段存储表演该电影的所有演员的名字. { "actors" : [ "Fred J ...
- jython获取was5.1的jvm监控参数
perfName = AdminControl.completeObjectName ('type=Perf,process=server1,node=TSC,cell=TSC,*') perfONa ...
- windows环境变量PATH顺序的重要性
PATH是路径的意思,PATH环境变量中存放的值,就是一连串的路径.不同的路径之间,用英文的分号间隔开.系统在执行用户命令时,若用户未给出绝对路径,则首先在当前目录下寻找相应的可执行文件.批处理文件等 ...
- jenkins jar包上传maven仓库
1 Jenkins 编译后部署至 Maven 仓库 jenkins编译后构件(如:jar包)部署至maven仓库需修改以下内容:maven 仓库配置:项目 pom 文件:本地仓库的 sett ...
- 09-伪数组 arguments
arguments代表的是实参.有个讲究的地方是:arguments只在函数中使用. (1)返回函数实参的个数:arguments.length 例子: fn(2,4); fn(2,4,6); fn( ...
- 虚拟机Ubuntu 18.04安装RabbitMQ 3.7.9
Windows 10家庭中文版,VirtualBox,Ubuntu 18.04,Rabbitmq 3.7.9,Erlang/OTP 20 [erts-9.2], 在虚拟机上装好了Ubuntu,写了一个 ...
- PhpStrom添加调试功能
要给PhpStrom添加调试功能,需要安装Xdebug,网址:https://xdebug.org/ 1.如何下载对应thinkphp版本号的Xdebug呢 创建一个php文件,在里面输入phpinf ...
- wpf 来回拉动滚动条抛异常
其中的控件,来回快速的来动滚动条,抛如下异常,但是完全代码捕捉不到. 这个树用到了VirtualizingStackPanel.IsVirtualizing="True".去掉该句 ...
- 【linux】ubuntu下crontab无效解决方法
在Debain的docker中启用crontab,踩了一整天的坑,特地记录一下.Debain和ubuntu差不多,故算在ubuntu下面了. 1.第一个坑,安装crontab apt-get inst ...
- 安装httpd过程,将网站部署到httpd过程
1,配置DNSvi /etc/resolv.conf 加入以下代码 nameserver 192.168.0.1 nameserver 8.8.8.8 nameserver 8.8.4.4 2.输入y ...