rabbitmq使用(三)
Publish/Subscribe
In the previous tutorial we created a work queue. The assumption behind a work queue is that each task is delivered to exactly one worker. In this part we'll do something completely different -- we'll deliver a message to multiple consumers. This pattern is known as "publish/subscribe".
To illustrate the pattern, we're going to build a simple logging system. It will consist of two programs -- the first will emit log messages and the second will receive and print them.
In our logging system every running copy of the receiver program will get the messages. That way we'll be able to run one receiver and direct the logs to disk; and at the same time we'll be able to run another receiver and see the logs on the screen.
Essentially, published log messages are going to be broadcast to all the receivers.
Exchanges
In previous parts of the tutorial we sent and received messages to and from a queue. Now it's time to introduce the full messaging model in Rabbit.
Let's quickly go over what we covered in the previous tutorials:
- A producer is a user application that sends messages.
- A queue is a buffer that stores messages.
- A consumer is a user application that receives messages.
The core idea in the messaging model in RabbitMQ is that the producer never sends any messages directly to a queue. Actually, quite often the producer doesn't even know if a message will be delivered to any queue at all.
Instead, the producer can only send messages to an exchange. An exchange is a very simple thing. On one side it receives messages from producers and the other side it pushes them to queues. The exchange must know exactly what to do with a message it receives. Should it be appended to a particular queue? Should it be appended to many queues? Or should it get discarded. The rules for that are defined by the exchange type.
There are a few exchange types available: direct, topic, headers and fanout. We'll focus on the last one -- the fanout. Let's create an exchange of that type, and call it logs:
channel.exchange_declare(exchange='logs',
type='fanout')
The fanout exchange is very simple. As you can probably guess from the name, it just broadcasts all the messages it receives to all the queues it knows. And that's exactly what we need for our logger.
Now, we can publish to our named exchange instead:
channel.basic_publish(exchange='logs',
routing_key='',
body=message)
Temporary queues
As you may remember previously we were using queues which had a specified name (remember hello and task_queue?). Being able to name a queue was crucial for us -- we needed to point the workers to the same queue. Giving a queue a name is important when you want to share the queue between producers and consumers.
But that's not the case for our logger. We want to hear about all log messages, not just a subset of them. We're also interested only in currently flowing messages not in the old ones. To solve that we need two things.
Firstly, whenever we connect to Rabbit we need a fresh, empty queue. To do it we could create a queue with a random name, or, even better - let the server choose a random queue name for us. We can do this by not supplying the queue parameter to queue_declare:
result = channel.queue_declare()
At this point result.method.queue contains a random queue name. For example it may look like amq.gen-JzTY20BRgKO-HjmUJj0wLg.
Secondly, once we disconnect the consumer the queue should be deleted. There's an exclusive flag for that:
result = channel.queue_declare(exclusive=True)
Bindings
We've already created a fanout exchange and a queue. Now we need to tell the exchange to send messages to our queue. That relationship between exchange and a queue is called abinding.
channel.queue_bind(exchange='logs',
queue=result.method.queue)
From now on the logs exchange will append messages to our queue.
Putting it all together
The producer program, which emits log messages, doesn't look much different from the previous tutorial. The most important change is that we now want to publish messages to our logs exchange instead of the nameless one. We need to supply a routing_key when sending, but its value is ignored for fanout exchanges. Here goes the code for emit_log.py script:
#!/usr/bin/env python
import pika
import sys connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel() channel.exchange_declare(exchange='logs',
type='fanout') message = ' '.join(sys.argv[1:]) or "info: Hello World!"
channel.basic_publish(exchange='logs',
routing_key='',
body=message)
print " [x] Sent %r" % (message,)
connection.close()
As you see, after establishing the connection we declared the exchange. This step is neccesary as publishing to a non-existing exchange is forbidden.
The messages will be lost if no queue is bound to the exchange yet, but that's okay for us; if no consumer is listening yet we can safely discard the message.
The code for receive_logs.py:
#!/usr/bin/env python
import pika connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel() channel.exchange_declare(exchange='logs',
type='fanout') result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue channel.queue_bind(exchange='logs',
queue=queue_name) print ' [*] Waiting for logs. To exit press CTRL+C' def callback(ch, method, properties, body):
print " [x] %r" % (body,) channel.basic_consume(callback,
queue=queue_name,
no_ack=True) channel.start_consuming()
We're done. If you want to save logs to a file, just open a console and type:
$ python receive_logs.py > logs_from_rabbit.log
If you wish to see the logs on your screen, spawn a new terminal and run:
$ python receive_logs.py
And of course, to emit logs type:
$ python emit_log.py
Using rabbitmqctl list_bindings you can verify that the code actually creates bindings and queues as we want. With two receive_logs.py programs running you should see something like:
$ sudo rabbitmqctl list_bindings
Listing bindings ...
logs exchange amq.gen-JzTY20BRgKO-HjmUJj0wLg queue []
logs exchange amq.gen-vso0PVvyiRIL2WoV3i48Yg queue []
...done.
rabbitmq使用(三)的更多相关文章
- RabbitMQ(三) -- Publish/Subscribe
RabbitMQ(三) -- Publish/Subscribe `rabbitmq`支持一对多的模式,一般称为发布/订阅.也就是说,生产者产生一条消息后,`rabbitmq`会把该消息分发给所有的消 ...
- rabbitMQ第三篇:采用不同的交换机规则
在上一篇我们都是采用发送信息到队列然后队列把信息在发送到消费者,其实实际情况并非如此,rabbitMQ其实真正的思想是生产者不发送任何信息到队列,甚至不知道信息将发送到哪个队列.相反生产者只能发送信息 ...
- python使用rabbitMQ介绍三(发布订阅模式)
一.模式介绍 在前面的例子中,消息直接发送到queue中. 现在介绍的模式,消息发送到exchange中,消费者把队列绑定到exchange上. 发布-订阅模式是把消息广播到每个消费者,每个消费者接收 ...
- 【RabbitMQ】三种类型交换器 Fanout,Direct,Topic(转)
出处:https://blog.csdn.net/fxq8866/article/details/62049393 RabbitMQ服务器会根据路由键将消息从交换器路由到队列中,如何处理投递到多个队列 ...
- rabbitMQ的三种路由模式
rabbitMQ工作流程: 1.声明交换机 2.声明消息队列 3.绑定交换机和队列 4.生产者往交换机里发送新消息 5.交换机根据所选的模式和routingKey决定消息发往哪条消息队列 6.一个消费 ...
- RabbitMQ系列(三)--Java API
基于java使用RabbitMQ 框架:SpringBoot1.5.14.RELEASE maven依赖: <dependency> <groupId>com.rabbitmq ...
- RabbitMQ实战(三)-高级特性
0 相关源码 1 你将学到 如何保证消息百分百投递成功 幂等性 如何避免海量订单生成时消息的重复消费 Confirm确认消息.Return返回消息 自定义消费者 消息的ACK与重回队列 限流 TTL ...
- RabbitMQ(三):RabbitMQ与Spring Boot简单整合
RabbitMQ是目前非常热门的一款消息中间件,不管是互联网大厂还是中小企业都在大量使用.Spring Boot的兴起,极大地简化了Spring的开发,本文将使用Spring Boot与RabbitM ...
- 消息中间件——RabbitMQ(三)理解RabbitMQ核心概念和AMQP协议!
前言 本章学习,我们可以了解到以下知识点: 互联网大厂为什么选择RabbitMQ? RabbiMQ的高性能之道是如何做到的? 什么是AMQP高级协议? AMQP核心概念是什么? RabbitMQ整体架 ...
- Rabbitmq交换机三种模式介绍
1.topic 将路由键和某模式进行匹配.此时队列需要绑定要一个模式上.符号“#”匹配一个或多个词,符号“*”匹配不多不少一个词.因此“abc.#”能够匹配到“abc.def.ghi”,但是“abc. ...
随机推荐
- SHA1算法原理
一.SHA1与MD5差异 SHA1对任意长度明文的预处理和MD5的过程是一样的,即预处理完后的明文长度是512位的整数倍,但是有一点不同,那就是SHA1的原始报文长度不能超过2的64次方,然后SHA1 ...
- maven名词解释
Maven名词解释 Project:任何你想build的事物,Maven都可以认为它们是工程.这些工程被定义为工程对象模型(POM,Poject Object Model).一个工程可以依赖其它的工程 ...
- python 生成器与协程
生成器在迭代中以某种方式生成下一个值并且返回和next()调用一样的东西. 挂起返回出中间值并多次继续的协同程序被称作生成器. 语法上讲,生成器是一个带yield语句的函数.一个函数或者子程序只返回一 ...
- hping网络安全工具的安装及使用
hping是用于生成和解析TCPIP协议数据包的开源工具.创作者是Salvatore Sanfilippo.目前最新版是hping3,支持使用tcl脚本自动化地调用其API.hping是安全审计.防火 ...
- 蝉知CMS本地迁移到服务器具体步骤
蝉知迁移步骤(2个方案,二选一即可) 方案一(整个chanzhi(eps)目录拷贝,假设新安装的蝉知文件夹名称为chanzhieps): 1.在新服务器上安装相同版本(版本号必须一致)的蝉知(安装文档 ...
- Python-HTML CSS 练习
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- PYTHON-操作系统基础
预习:操作系统基础1,编程语言的分类2,多版本共存3,执行python程序的两种方式4,变量5,输入输出6,运算符7,基本数据类型8,流程控制之if ------------------------- ...
- compile php with openssl on mac osx error 填坑
从源码手动编译 PHP 时出现如下错误: Default 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Undefined symbols for arch ...
- python与redis
1.什么是redis Redis 是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合).zset ...
- this和super不能同时出现在构造方法中
package com.bjpowernode.t02inheritance.c09; /* * 使用super调用父类的构造方法 */public class TestSuper02 { publi ...