题目大意

  有一个长度为 \(n\) 的序列。

  有 \(m\) 次修改,每次给你 \(x,y\),令 \(\forall 1\leq i\leq \lfloor\frac{n}{x}\rfloor,a_{ix}=a_{ix}+iy\)

  还有 \(q\) 次询问,每次给你 \(x\),求 \(\sum_{i=1}^{\lfloor\frac{n}{x}\rfloor}ia_{ix}\)

  对 \(998244353\) 取模。

  \(n\leq {10}^9,m,q\leq 200000\),记 \(z\) 为所有 \(x\) 的 \(\operatorname{lcm}\),那么 \(z\) 的质因子个数 \(w\) 不超过 \(10\)

题解

  首先你要会 \(O(n\log\log n)\) 求高维前缀和&后缀和,这样就可以拿到 \(65\) 分。

  容易发现,所有 \(z\) 的不超过 \(n\) 的因子个数 \(s\leq 200000\)。

  因为所有修改&询问的数都是 \(z\) 的因子,所以可以把那些不是 \(z\) 的因子的位置的贡献放在那个数和 \(z\) 的 \(\gcd\) 处统计。

  具体来说,我们在求高维前缀和的时候只求 \(z\) 的不超过 \(n\) 的因子的答案,求完之后把每个位置 \(x\) 的值乘上一个系数 \(f(\frac{n}{x})\) 。

\[f(n)=\sum_{i=1}^ni^2[\gcd(i,z)=1]
\]

  \(f\) 可以筛出来。

  高维后缀和也可以用类似的方法做。

  然后就能得到答案了。

  时间复杂度:\(O(w(s+\sqrt{n}))\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<functional>
#include<cmath>
#include<tr1/unordered_map>
//using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef std::pair<int,int> pii;
typedef std::pair<ll,ll> pll;
void open(const char *s){
#ifndef ONLINE_JUDGE
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
int rd(){int s=0,c,b=0;while(((c=getchar())<'0'||c>'9')&&c!='-');if(c=='-'){c=getchar();b=1;}do{s=s*10+c-'0';}while((c=getchar())>='0'&&c<='9');return b?-s:s;}
void put(int x){if(!x){putchar('0');return;}static int c[20];int t=0;while(x){c[++t]=x%10;x/=10;}while(t)putchar(c[t--]+'0');}
int upmin(int &a,int b){if(b<a){a=b;return 1;}return 0;}
int upmax(int &a,int b){if(b>a){a=b;return 1;}return 0;}
const ll p=998244353;
ll fp(ll a,ll b)
{
ll s=1;
for(;b;b>>=1,a=a*a%p)
if(b&1)
s=s*a%p;
return s;
}
const ll inv6=fp(6,p-2);
std::tr1::unordered_map<int,int> s;
//int s[10000010];
int c[100010];
int cnt;
int a[200010];
int tot;
int ax[200010],ay[200010],bx[200010];
int n,m,q;
void dfs(int x,int y,int b)
{
if(b)
a[++tot]=x;
if((ll)x*c[y]<=n)
dfs(x*c[y],y,1);
if(y<cnt)
dfs(x,y+1,0);
}
ll f1[100010],f2[100010];
ll sum(ll x)
{
return x*(x+1)%p*(2*x+1)%p*inv6%p;
}
void sieve()
{
int m=100000;
int mx=n/(m+1);
for(int i=1;i<=m;i++)
f1[i]=sum(i);
for(int i=1;i<=mx;i++)
f2[i]=sum(n/i);
for(int i=1;i<=cnt;i++)
{
ll x=(ll)c[i]*c[i]%p;
int n1=mx/c[i];
for(int j=1;j<=n1;j++)
f2[j]=(f2[j]-x*f2[j*c[i]])%p;
for(int j=n1+1;j<=mx;j++)
f2[j]=(f2[j]-x*f1[n/((ll)j*c[i])])%p;
for(int j=m;j>=1;j--)
f1[j]=(f1[j]-x*f1[j/c[i]])%p;
}
}
ll query(int x)
{
return x<=100000?f1[x]:f2[n/x];
}
int main()
{
open("loj561");
scanf("%d%d%d",&n,&m,&q);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&ax[i],&ay[i]);
s[ax[i]]=(s[ax[i]]+ay[i])%p;
int x=ax[i];
for(int j=1;j<=cnt;j++)
while(x%c[j]==0)
x/=c[j];
for(int j=2;j*j<=x;j++)
if(x%j==0)
{
c[++cnt]=j;
while(x%j==0)
x/=j;
}
if(x!=1)
c[++cnt]=x;
}
for(int i=1;i<=q;i++)
{
scanf("%d",&bx[i]);
int x=bx[i];
for(int j=1;j<=cnt;j++)
while(x%c[j]==0)
x/=c[j];
for(int j=2;j*j<=x;j++)
if(x%j==0)
{
c[++cnt]=j;
while(x%j==0)
x/=j;
}
if(x!=1)
c[++cnt]=x;
}
std::sort(c+1,c+cnt+1);
dfs(1,1,1);
std::sort(a+1,a+tot+1);
sieve();
for(int i=1;i<=cnt;i++)
for(int j=1;j<=tot;j++)
if(a[j]%c[i]==0)
s[a[j]]=(s[a[j]]+(ll)s[a[j]/c[i]]*c[i])%p;
for(int i=1;i<=tot;i++)
s[a[i]]=s[a[i]]*query(n/a[i])%p;
for(int i=1;i<=cnt;i++)
for(int j=tot;j>=1;j--)
if(a[j]%c[i]==0)
s[a[j]/c[i]]=(s[a[j]/c[i]]+(ll)s[a[j]]*c[i])%p;
for(int i=1;i<=q;i++)
printf("%lld\n",(s[bx[i]]+p)%p);
return 0;
}

【LR9】【LOJ561】CommonAnts 的调和数 数论 筛法的更多相关文章

  1. 「LibreOJ Round #9」CommonAnts 的调和数

    题解: 对于subtask3:可以把相同的归在一起就是$nlogn$的了 对于subtask4: 可以使用高维前缀和的技术,具体的就是把每个质因数看作一维空间 那么时间复杂度是$\sum \limit ...

  2. XDU 1022 (数论筛法+前缀和)

    解法一:数论筛法+前缀和 //其实题目中f[n]的值可理解为存在多少个整数对使a*b<=n #include<cstdio> #define N 1007 #define maxn ...

  3. 数论 - 筛法暴力打表 --- hdu : 12876 Quite Good Numbers

    Quite Good Numbers Time Limit: 1000ms, Special Time Limit:2500ms, Memory Limit:65536KB Total submit ...

  4. ACM主要算法

    ACM主要算法ACM主要算法介绍 初期篇 一.基本算法(1)枚举(poj1753, poj2965)(2)贪心(poj1328, poj2109, poj2586)(3)递归和分治法(4)递推(5)构 ...

  5. ACM常用算法

    数据结构 栈,队列,链表 哈希表,哈希数组 堆,优先队列 双端队列 可并堆 左偏堆 二叉查找树 Treap 伸展树 并查集 集合计数问题 二分图的识别 平衡二叉树 二叉排序树 线段树 一维线段树 二维 ...

  6. ACM需要掌握算法

    数据结构 栈,队列,链表 哈希表,哈希数组 堆,优先队列 双端队列 可并堆 左偏堆 二叉查找树 Treap 伸展树 并查集 集合计数问题 二分图的识别 平衡二叉树 二叉排序树 线段树 一维线段树 二维 ...

  7. ACM用到的算法。先做个笔记,记一下

    ACM 所有算法 数据结构 栈,队列,链表 哈希表,哈希数组 堆,优先队列 双端队列 可并堆 左偏堆 二叉查找树 Treap 伸展树 并查集 集合计数问题 二分图的识别 平衡二叉树 二叉排序树 线段树 ...

  8. ACM算法目录

    数据结构 栈,队列,链表 •哈希表,哈希数组 •堆,优先队列 双端队列 可并堆 左偏堆 •二叉查找树 Treap 伸展树 •并查集 集合计数问题 二分图的识别 •平衡二叉树 •二叉排序树 •线段树 一 ...

  9. ACM技能表

    看看就好了(滑稽) 数据结构 栈 栈 单调栈 队列 一般队列 优先队列/单调队列 循环队列 双端队列 链表 一般链表 循环链表 双向链表 块状链表 十字链表 邻接表/邻接矩阵 邻接表 邻接多重表 Ha ...

随机推荐

  1. ArcGIS Server较早版本切片迁移注意事项

    原创文章,转载须标明出处自: http://www.cnblogs.com/gisspace/p/8286838.html -------------------------------------- ...

  2. Servlet工作原理解析 《深入分析java web 技术内幕》第九章

    参考关于servblet的相关文章 侧重概况:https://blog.csdn.net/levycc/article/details/50728921 ibm的相关:https://www.ibm. ...

  3. DVWA 黑客攻防演练(八)SQL 注入 SQL Injection

    web 程序中离不开数据库,但到今天 SQL注入是一种常见的攻击手段.如今现在一些 orm 框架(Hibernate)或者一些 mapper 框架( iBatis)会对 SQL 有一个更友好的封装,使 ...

  4. 电脑一键U盘启动快捷键

    下面是我特意列出的品牌电脑.笔记本电脑.组装电脑一键U盘启动快捷键对应列表,仅供大家查阅参考! [品牌-笔记本电脑] 笔记本品牌  启动按键 联想笔记本  F12 宏基笔记本  F12 华硕笔记本   ...

  5. Oracle 12c RAC 静默安装文档

    参考文档: https://docs.oracle.com/en/database/oracle/oracle-database/12.2/cwlin/index.html https://docs. ...

  6. 建立第一个SpringBoot小列子(碰到的错误)

    当加入@SpringBootApplication注解时,无法得到解析 错误提示:SpringBootApplication cannot be resolved to a type 错误原因是因为s ...

  7. Burpsuite 之intruder

    首先工具:Burpsuite1.7,DVWA,火狐浏览器代理插件,火狐浏览器,密码字典(以下用Bp代指burpsuite) 启动Bp,启动DVWA,并打开本地代理功能 ​ 开启bp的拦截功能,并在dv ...

  8. Centos7上安装docker (转)

    Centos7上安装docker Docker从1.13版本之后采用时间线的方式作为版本号,分为社区版CE和企业版EE. 社区版是免费提供给个人开发者和小型团体使用的,企业版会提供额外的收费服务,比如 ...

  9. Python 位操作运算符

    & 按位与运算符:参与运算的两个值,如果两个相应位都为1,则该位的结果为1,否则为0 (a & b) 输出结果 12 ,二进制解释: 0000 1100 | 按位或运算符:只要对应的二 ...

  10. sizeof和strlen()区别及用法

    //sizeof是以字节为单位计算变量或类型所占内存大小,它是属于C语言运算符系列:而strlen()是一个函数,是计算字符串长度(也是以字节为单位,但略有区别):比如: char array[] = ...