题目大意

  有一个长度为 \(n\) 的序列。

  有 \(m\) 次修改,每次给你 \(x,y\),令 \(\forall 1\leq i\leq \lfloor\frac{n}{x}\rfloor,a_{ix}=a_{ix}+iy\)

  还有 \(q\) 次询问,每次给你 \(x\),求 \(\sum_{i=1}^{\lfloor\frac{n}{x}\rfloor}ia_{ix}\)

  对 \(998244353\) 取模。

  \(n\leq {10}^9,m,q\leq 200000\),记 \(z\) 为所有 \(x\) 的 \(\operatorname{lcm}\),那么 \(z\) 的质因子个数 \(w\) 不超过 \(10\)

题解

  首先你要会 \(O(n\log\log n)\) 求高维前缀和&后缀和,这样就可以拿到 \(65\) 分。

  容易发现,所有 \(z\) 的不超过 \(n\) 的因子个数 \(s\leq 200000\)。

  因为所有修改&询问的数都是 \(z\) 的因子,所以可以把那些不是 \(z\) 的因子的位置的贡献放在那个数和 \(z\) 的 \(\gcd\) 处统计。

  具体来说,我们在求高维前缀和的时候只求 \(z\) 的不超过 \(n\) 的因子的答案,求完之后把每个位置 \(x\) 的值乘上一个系数 \(f(\frac{n}{x})\) 。

\[f(n)=\sum_{i=1}^ni^2[\gcd(i,z)=1]
\]

  \(f\) 可以筛出来。

  高维后缀和也可以用类似的方法做。

  然后就能得到答案了。

  时间复杂度:\(O(w(s+\sqrt{n}))\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<functional>
#include<cmath>
#include<tr1/unordered_map>
//using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef std::pair<int,int> pii;
typedef std::pair<ll,ll> pll;
void open(const char *s){
#ifndef ONLINE_JUDGE
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
int rd(){int s=0,c,b=0;while(((c=getchar())<'0'||c>'9')&&c!='-');if(c=='-'){c=getchar();b=1;}do{s=s*10+c-'0';}while((c=getchar())>='0'&&c<='9');return b?-s:s;}
void put(int x){if(!x){putchar('0');return;}static int c[20];int t=0;while(x){c[++t]=x%10;x/=10;}while(t)putchar(c[t--]+'0');}
int upmin(int &a,int b){if(b<a){a=b;return 1;}return 0;}
int upmax(int &a,int b){if(b>a){a=b;return 1;}return 0;}
const ll p=998244353;
ll fp(ll a,ll b)
{
ll s=1;
for(;b;b>>=1,a=a*a%p)
if(b&1)
s=s*a%p;
return s;
}
const ll inv6=fp(6,p-2);
std::tr1::unordered_map<int,int> s;
//int s[10000010];
int c[100010];
int cnt;
int a[200010];
int tot;
int ax[200010],ay[200010],bx[200010];
int n,m,q;
void dfs(int x,int y,int b)
{
if(b)
a[++tot]=x;
if((ll)x*c[y]<=n)
dfs(x*c[y],y,1);
if(y<cnt)
dfs(x,y+1,0);
}
ll f1[100010],f2[100010];
ll sum(ll x)
{
return x*(x+1)%p*(2*x+1)%p*inv6%p;
}
void sieve()
{
int m=100000;
int mx=n/(m+1);
for(int i=1;i<=m;i++)
f1[i]=sum(i);
for(int i=1;i<=mx;i++)
f2[i]=sum(n/i);
for(int i=1;i<=cnt;i++)
{
ll x=(ll)c[i]*c[i]%p;
int n1=mx/c[i];
for(int j=1;j<=n1;j++)
f2[j]=(f2[j]-x*f2[j*c[i]])%p;
for(int j=n1+1;j<=mx;j++)
f2[j]=(f2[j]-x*f1[n/((ll)j*c[i])])%p;
for(int j=m;j>=1;j--)
f1[j]=(f1[j]-x*f1[j/c[i]])%p;
}
}
ll query(int x)
{
return x<=100000?f1[x]:f2[n/x];
}
int main()
{
open("loj561");
scanf("%d%d%d",&n,&m,&q);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&ax[i],&ay[i]);
s[ax[i]]=(s[ax[i]]+ay[i])%p;
int x=ax[i];
for(int j=1;j<=cnt;j++)
while(x%c[j]==0)
x/=c[j];
for(int j=2;j*j<=x;j++)
if(x%j==0)
{
c[++cnt]=j;
while(x%j==0)
x/=j;
}
if(x!=1)
c[++cnt]=x;
}
for(int i=1;i<=q;i++)
{
scanf("%d",&bx[i]);
int x=bx[i];
for(int j=1;j<=cnt;j++)
while(x%c[j]==0)
x/=c[j];
for(int j=2;j*j<=x;j++)
if(x%j==0)
{
c[++cnt]=j;
while(x%j==0)
x/=j;
}
if(x!=1)
c[++cnt]=x;
}
std::sort(c+1,c+cnt+1);
dfs(1,1,1);
std::sort(a+1,a+tot+1);
sieve();
for(int i=1;i<=cnt;i++)
for(int j=1;j<=tot;j++)
if(a[j]%c[i]==0)
s[a[j]]=(s[a[j]]+(ll)s[a[j]/c[i]]*c[i])%p;
for(int i=1;i<=tot;i++)
s[a[i]]=s[a[i]]*query(n/a[i])%p;
for(int i=1;i<=cnt;i++)
for(int j=tot;j>=1;j--)
if(a[j]%c[i]==0)
s[a[j]/c[i]]=(s[a[j]/c[i]]+(ll)s[a[j]]*c[i])%p;
for(int i=1;i<=q;i++)
printf("%lld\n",(s[bx[i]]+p)%p);
return 0;
}

【LR9】【LOJ561】CommonAnts 的调和数 数论 筛法的更多相关文章

  1. 「LibreOJ Round #9」CommonAnts 的调和数

    题解: 对于subtask3:可以把相同的归在一起就是$nlogn$的了 对于subtask4: 可以使用高维前缀和的技术,具体的就是把每个质因数看作一维空间 那么时间复杂度是$\sum \limit ...

  2. XDU 1022 (数论筛法+前缀和)

    解法一:数论筛法+前缀和 //其实题目中f[n]的值可理解为存在多少个整数对使a*b<=n #include<cstdio> #define N 1007 #define maxn ...

  3. 数论 - 筛法暴力打表 --- hdu : 12876 Quite Good Numbers

    Quite Good Numbers Time Limit: 1000ms, Special Time Limit:2500ms, Memory Limit:65536KB Total submit ...

  4. ACM主要算法

    ACM主要算法ACM主要算法介绍 初期篇 一.基本算法(1)枚举(poj1753, poj2965)(2)贪心(poj1328, poj2109, poj2586)(3)递归和分治法(4)递推(5)构 ...

  5. ACM常用算法

    数据结构 栈,队列,链表 哈希表,哈希数组 堆,优先队列 双端队列 可并堆 左偏堆 二叉查找树 Treap 伸展树 并查集 集合计数问题 二分图的识别 平衡二叉树 二叉排序树 线段树 一维线段树 二维 ...

  6. ACM需要掌握算法

    数据结构 栈,队列,链表 哈希表,哈希数组 堆,优先队列 双端队列 可并堆 左偏堆 二叉查找树 Treap 伸展树 并查集 集合计数问题 二分图的识别 平衡二叉树 二叉排序树 线段树 一维线段树 二维 ...

  7. ACM用到的算法。先做个笔记,记一下

    ACM 所有算法 数据结构 栈,队列,链表 哈希表,哈希数组 堆,优先队列 双端队列 可并堆 左偏堆 二叉查找树 Treap 伸展树 并查集 集合计数问题 二分图的识别 平衡二叉树 二叉排序树 线段树 ...

  8. ACM算法目录

    数据结构 栈,队列,链表 •哈希表,哈希数组 •堆,优先队列 双端队列 可并堆 左偏堆 •二叉查找树 Treap 伸展树 •并查集 集合计数问题 二分图的识别 •平衡二叉树 •二叉排序树 •线段树 一 ...

  9. ACM技能表

    看看就好了(滑稽) 数据结构 栈 栈 单调栈 队列 一般队列 优先队列/单调队列 循环队列 双端队列 链表 一般链表 循环链表 双向链表 块状链表 十字链表 邻接表/邻接矩阵 邻接表 邻接多重表 Ha ...

随机推荐

  1. ios屏幕怎么投屏到电脑显示器

    iphone在国内一直都很受欢迎,为什么这么受欢迎呢?其实苹果手机操作系统非常的新颖,让人对手机有了重新的认识.但是ios屏幕怎么投屏到电脑显示器.感兴趣的一起阅读下面的内容吧! 使用工具: 苹果手机 ...

  2. linux命令df中df -h和df -i

    df 命令: linux中df命令的功能是用来检查linux服务器的文件系统的磁盘空间占用情况.可以利用该命令来获取硬盘被占用了多少空间,目前还剩下多少空间等信息. 1.命令格式: df [选项] [ ...

  3. location.origin不兼容IE8解决方案

    最近项目中遇到一个问题,在ajax跟后台交互时需要传一个全路径url.项目上线后,在谷歌,火狐,360等浏览器访问一切正常.但唯独IE8下出现问题,提示url:undefined ! 这就尴尬了!!! ...

  4. sql server中嵌套事务*

    转自 https://www.cnblogs.com/guanjie20/archive/2013/02/17/2914488.html 我们在写事务时经常遇到的问题如下: 消息 266,级别 16, ...

  5. iOS pthread

    pthread 是属于 POSIX 多线程开发框架 创建线程的方法:pthread_create   参数含义: 1.指向线程代号的指针 2.线程的属性 3.指向函数的指针 4.传递给该函数的参数 返 ...

  6. STP生成树协议

    STP主要作用 1.消除环路:通过阻断冗余链路来消除网络中可能存在的链路 2.链路备份:当活动那个路径发生故障时,激活备份链路,及时恢复网络连通性. 根桥选举 每个交换机启动STP后,都认为自己是根桥 ...

  7. SQLServer之修改UNIQUE约束

    使用SSMS数据库管理工具修改UNIQUE约束 1.连接数据库,选择数据表->右键点击->选择设计(或者展开键,选择要修改的键,右键点击,选择修改,后面步骤相同). 2.选择要修改的数据列 ...

  8. Postman安装与使用

    Postman一款非常流行的API调试工具.其实,开发人员用的更多.因为测试人员做接口测试会有更多选择,例如Jmeter.soapUI等.不过,对于开发过程中去调试接口,Postman确实足够的简单方 ...

  9. linux上修改mysql登陆密码

    1. 修改MySQL的登录设置: # vi /etc/my.cnf     2. 在[mysqld]的段中加上一句:skip-grant-tables  例如: [mysqld] port       ...

  10. Putty中的pscp和psftp的简明用法

    用习惯了putty,那是真心的方便啊,putty文件夹下其他的小兄弟也不能忽略啊. 以前的时候,从远程服务器下载个文件用winscp,后来,发现在putty文件夹里好像有一个 pscp和psftp,今 ...