有一句话这样说:如果你想了解一个人,你可以从他身边的朋友开始。

如果与他交往的好友都是一些品行高尚的人,那么可以认为这个人的品行也差不了。

其实古人在这方面的名言警句,寓言故事有很多。例如:人以类聚,物以群分。近朱者赤近墨者黑

其实K-近邻算法和古人的智慧想通,世间万物息息相通,你中有我,我中有你。

K-近邻原理:

存在一个训练集,我们知道每一个样本的标签,例如训练样本是一群人,他们都有相应特征,例如,爱喝酒或爱看书或逛窑子或打架斗殴或乐于助人等等,并且知道他们是好人还是坏人,然后来了一个新人(新样本),然后把新样本的特征与样本集中数据对应的特征进行比较,然后算法提取集中特征最相似数据的分类标签,就是比较这个新人具有的品行与那一群人中谁的品行相近,选取出样本集中数据中前K个数据(这就是K的来历),然后查看这K个数据的标签,选取出现最多类作为新样本的分类。就是查看选出的这些人,看看是好人多还是坏人多,如果好人多,那么我们就确定这个新人是好人。

K-近邻算法没有训练过程,它直接对新样本进行分类。

代码来源机器学习实战,python3.7可用,详细注释:

#coding=utf-8
from numpy import *
import operator
import os,sys def createDataSet():
#数组转换成矩阵
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group,labels #inx为测试样本
def classify0(inx,dataSet,labels,k):
#shape[0]给出行数,shape[1]列数
dataSetSize = dataSet.shape[0]
#把inx矩阵的每一行复制dataSetSize次,列不复制
#为了把该样本与训练集中每一个样本计算出距离
#计算欧氏距离
diffMat = tile(inx,(dataSetSize,1)) - dataSet
#距离的平方差
sqDiffMat = diffMat**2
#把数组每一行求和
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
#argsort 从小到大排序,但是返回的是下标
sortedDistIndices = distances.argsort()
classCount = {}
#k是前k个最小距离
for i in range(k):
#把最小距离对应的标签赋值给voteIlabel
voteIlabel = labels[sortedDistIndices[i]]
#投票算法,统计前k个数据的标签类型及其出现的个数
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
#排序选出出现次数最多的标签,(注意:Python 3 renamed dict.iteritems() -> dict.items())
sortedClassCount = sorted(classCount.items(),
key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0] def file2matrix(filename):
fr = open(filename)
#文件有多少行
arrayOLines = fr.readlines()
numberOfLines = len(arrayOLines)
#返回一个(numberOfLines,3)的零矩阵
returnMat = zeros((numberOfLines,3))
classLabelVector = []
index = 0
for line in arrayOLines:
#去除字符串的首尾的字符(空格,回车)
line = line.strip()
listFromLine = line.split('\t')
#复制行给returnMat
returnMat[index,:] = listFromLine[0:3]
#获取标签,这里需要把字符串类型转换成int类型
if listFromLine[-1] == 'largeDoses':
classLabelVector.append(3)
elif listFromLine[-1] == 'smallDoses':
classLabelVector.append(2)
elif listFromLine[-1] == 'didntLike':
classLabelVector.append(1)
else:
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat,classLabelVector #分析数据
'''
控制台输入
import matplotlib
import matplotlib.pyplot as plt
#定义一个图像窗口
fig = plt.figure()
#意思是窗口背划分成1*1个格子,使用第一个格子
ax = fig.add_subplot(111)
#描绘散点图
ax.scatter(datingDataMat[:,1],datingDataMat[:,2])
#使用颜色来分辨
ax.scatter(datingDataMat[:,1],datingDataMat[:,2],15.0*array(datingLabels),15.0*array(datingLabels))
plt.show() '''
#给出的数据集往往会遇见这样的问题,就是每一个特征值的取值不在
#同一个数量级,有的取值会很大,这样会严重影响结果的准确性
#所以要归一化特征值到0~1之间
#公式:newValue = (oldValue-min)/(max-min)
def autoNorm(dataSet):
#返回每一列最小值(1,m)
minVals = dataSet.min(0)
#返回每一列最大值
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - tile(minVals,(m,1))
normDataSet = normDataSet/tile(ranges,(m,1))
return normDataSet,ranges,minVals #分类器针对约会网站的测试代码
def datingClassTest():
hoRatio = 0.10
datingDataMat,datingLabels = file2matrix('datingTestSet.txt')
#归一化
normMat,ranges,minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
#选取数据集的10%作为测试集
numTestVecs = int(m*hoRatio)
errorCount = 0.0
#循环对测试集进行分类,然后计算准确率
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
print ("the classifier came back with:%d,the real answer is:%d"%(classifierResult,datingLabels[i]))
if (classifierResult != datingLabels[i]):errorCount += 1.0
print ("the total error rate is:%f"%(errorCount/float(numTestVecs))) def classifyPerson():
resultList = ['not at all', 'in small doses', 'in large doses']
#python3 输入是input
percentTats = float(input("percentage of time spent playing video games?"))
ffMiles = float(input("frequent flier miles earned per year?"))
iceCream = float(input("liters of ice cream consumed per year?"))
datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
inArr = array([ffMiles, percentTats, iceCream])
classifierResult = classify0((inArr - minVals)/ranges, normMat, datingLabels, 3)
print ("You will probably like this person: %s" % resultList[classifierResult - 1]) #识别手写数字
#把32*32的矩阵转换成1*1024矩阵
def img2vector(filename):
returnVect = zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect def handwritingClassTest():
hwLabels= []
#获取目录的内容
trainingFileList = os.listdir('trainingDigits')
m = len(trainingFileList)
trainingMat = zeros((m,1024))
for i in range(m):
#从文本文件的名称中截取是什么数字
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
testFileList = os.listdir('testDigits')
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest,trainingMat,hwLabels,3)
#计算精确性
print ("the classifier came back with:%d,the real answer is:%d" % (classifierResult,classNumStr))
if (classifierResult != classNumStr):errorCount += 1.0
print ("\n the total number of errors is:%d" % errorCount)
print ("\n the total error rate is:%f" % (errorCount/float(mTest)))

算法主要有两个主要的步骤:

(1)求解两向量之间的距离来比较相似性:

  

(2) 排序选出前K个相似点,筛选出出现频率最高的类别

  代码中直接调用排序算法,如果对于大量数据,排序会很耗费时间,所以可以优化排序算法:Kd树

筛选评论最高的是通过投票的方式。

上面代码中包括了识别手写体的代码,依然用的是欧氏距离,之前做过一个使用神经网络训练做的手写体数字识别,我想比较这两个算法的准确性。

kNN算法没有训练过程,算法也十分简单,但是在实践的过程中我发现,KNN具有局限性。我的做法是

kNN识别手写体:

先把数字的灰度图转换成32*32的字符文件的格式,然后使用kNN算法,发现不同的测试集的准确性相差很大,如果使用和训练集相近的测试集去测试,所谓相近就是说数字的大小,粗细都会影响识别的准确性,所以我用不同的测试集得到的结果完全不同,如果用训练集去作为测试集使用,准确率会达到99%,但是换一个不同的测试集,准确率就会降到34%左右(比蒙的好一点点)。如果要提高准确性,必须加大

训练集(尽量包含所有的手写体类型),再调整K的取值,如果那样的话,做一次分类,就要对大量的数据集进行比对,排序选出相近的,这样效率非常低。

神经网络识别手写体:

在训练的过程中会消耗时间,但是一旦模型训练完毕,准确率会很高。

所以说kNN算法适合数据集较小的情况的分类。

注意:K-近邻是监督学习,K-Means是无监督学习

我眼中的K-近邻算法的更多相关文章

  1. 机器学习实战笔记--k近邻算法

    #encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...

  2. k近邻算法的Java实现

    k近邻算法是机器学习算法中最简单的算法之一,工作原理是:存在一个样本数据集合,即训练样本集,并且样本集中的每个数据都存在标签,即我们知道样本集中每一数据和所属分类的对应关系.输入没有标签的新数据之后, ...

  3. 基本分类方法——KNN(K近邻)算法

    在这篇文章 http://www.cnblogs.com/charlesblc/p/6193867.html 讲SVM的过程中,提到了KNN算法.有点熟悉,上网一查,居然就是K近邻算法,机器学习的入门 ...

  4. 从K近邻算法谈到KD树、SIFT+BBF算法

    转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...

  5. 机器学习之K近邻算法(KNN)

    机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import ...

  6. k近邻算法

    k 近邻算法是一种基本分类与回归方法.我现在只是想讨论分类问题中的k近邻法.k近邻算法的输入为实例的特征向量,对应于特征空间的点,输出的为实例的类别.k邻近法假设给定一个训练数据集,其中实例类别已定. ...

  7. KNN K~近邻算法笔记

    K~近邻算法是最简单的机器学习算法.工作原理就是:将新数据的每一个特征与样本集中数据相应的特征进行比較.然后算法提取样本集中特征最相似的数据的分类标签.一般来说.仅仅提取样本数据集中前K个最相似的数据 ...

  8. 机器学习03:K近邻算法

    本文来自同步博客. P.S. 不知道怎么显示数学公式以及排版文章.所以如果觉得文章下面格式乱的话请自行跳转到上述链接.后续我将不再对数学公式进行截图,毕竟行内公式截图的话排版会很乱.看原博客地址会有更 ...

  9. 机器学习——KNN算法(k近邻算法)

    一 KNN算法 1. KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分 ...

  10. [机器学习] k近邻算法

    算是机器学习中最简单的算法了,顾名思义是看k个近邻的类别,测试点的类别判断为k近邻里某一类点最多的,少数服从多数,要点摘录: 1. 关键参数:k值 && 距离计算方式 &&am ...

随机推荐

  1. Python第十天 print >> f,和fd.write()的区别 stdout的buffer 标准输入 标准输出 从控制台重定向到文件 标准错误 重定向 输出流和输入流 捕获sys.exit()调用 optparse argparse

    Python第十天   print >> f,和fd.write()的区别    stdout的buffer  标准输入 标准输出  从控制台重定向到文件  标准错误   重定向 输出流和 ...

  2. 20180831-Linux环境下Python 3.6.6 的安装说明

    20180831-Linux环境下Python 3.6.6 的安装说明 摘要:Python3 安装部署,普通用户,编译安装 Author: andy_yhm@yeah.net Date: 201808 ...

  3. go语言打造个人博客系统(二)

    go语言打造个人博客系统(二)   在上篇文章go语言打造个人博客系统(一)中,我们了解了go语言的优点和go语言的数据库操作,本次我们会完成博客系统的后端开发. 博客系统后端接口开发 路由测试 ht ...

  4. OV摄像头图像采集基础知识总结

    目前FPGA用于图像采集 传输 处理 显示应用越来越多,主要原因是图像处理领域的火热以及FPGA强大的并行处理能力.本文以OV7725为例,对摄像头使用方面的基础知识做个小的总结,为后续做个铺垫. 下 ...

  5. SQLServer之修改CHECK约束

    使用SSMS数据库管理工具修改CHECK约束 1.打开数据库,选择数据表->右键点击->选择设计(或者展开约束,选择约束,右键点击,选择修改,后面步骤相同). 2.选择要修改的数据列-&g ...

  6. spring异步执行报异常No qualifying bean of type 'org.springframework.core.task.TaskExecutor' available

    最近观察项目运行日志的时候突然发现了一个异常, [2018-04-03 10:49:07] 100.0.1.246 http-nio-8080-exec-9 DEBUG org.springframe ...

  7. virtualenvwrapper 虚拟环境的使用 和 python 安装源的更改

    virtualenvwrapper 虚拟环境的使用 鉴于virtualenv不便于对虚拟环境集中管理,所以推荐直接使用virtualenvwrapper. virtualenvwrapper提供了一系 ...

  8. day5-python的文件操作-坚持就好

    目录摘要 文件处理 1.文件初识 2.文件的读操作 3.文件的写操作 4.文件的追加操作 5.文件的其他操作 6.文件的修改 正式开始 文件处理:写了这么多代码了,有的时候我们执行完成的结果想永久保存 ...

  9. 解决chrome安装谷歌访问助手错误问题

    解决chrome安装谷歌访问助手错误问题 针对新版本安装谷歌访问助手插件报错问题 1.下载谷歌访问助手 http://www.ggfwzs.com/ 2.chrome浏览器打开发者模式 3.将下载的c ...

  10. SpringMVC处理请求和返回流程

    流程描述:一个url请求,找打指定的requestMapping再返回指定的jsp界面 通过url拿到指定的java方法 HandlerExecutionChain  mappedHandler = ...