Numpy 基础

参考https://www.jianshu.com/p/83c8ef18a1e8

import numpy as np

简单创建数组

# 创建简单列表
a = [1, 2, 3, 4]
# 将列表转换为数组
b = np.array(a) print(a, "\t", b) print("\n数组元素个数:\t",b.size)
print("数组形状:\t", b.shape)
print("数组维度:\t", b.ndim)
print("数组元素类型:\t", b.dtype)

[1, 2, 3, 4] [1 2 3 4]

数组元素个数: 4

数组形状: (4,)

数组维度: 1

数组元素类型: int32

快速创建N维数组的api函数

# 创建10行10列的数值为浮点1的矩阵
array_one = np.ones([5, 5])
# 创建10行10列的数值为浮点0的矩阵
array_zero = np.zeros([5, 5])

从现有的数据创建数组:

  • array(深拷贝)
  • asarray(浅拷贝)

创建随机数组

  • 均匀分布

    • np.random.rand(10, 10)创建指定形状(示例为10行10列)的数组(范围在0至1之间)
    • np.random.uniform(0, 100)创建指定范围内的一个数
    • np.random.randint(0, 100) 创建指定范围内的一个整数
  • 正态分布

    给定均值/标准差/维度的正态分布 np.random.normal(1.75, 0.1, (2, 3))

数组的索引、切片

# 正态生成4行5列的二维数组
arr = np.random.normal(1.75, 0.1, (4, 5))
print(arr)
# 截取第1至2行的第2至3列(从第0行算起)
after_arr = arr[1:3, 2:4]
print(after_arr)
[[1.70402304 1.6514506  1.63572257 1.81760737 1.91454784]
[1.65294415 1.82911738 1.78747379 1.82805398 1.76698167]
[1.91056499 1.86022006 1.89047126 1.62899365 1.88996188]
[1.77414812 1.630505 1.81022207 1.78061747 1.65964094]]
[[1.78747379 1.82805398]
[1.89047126 1.62899365]]

改变数组形状(要求前后元素个数匹配)

print("reshape函数的使用!")
one_20 = np.ones([20])
print("-->1行20列<--")
print (one_20) one_4_5 = one_20.reshape([4, 5])
print("-->4行5列<--")
print (one_4_5)
reshape函数的使用!
-->1行20列<--
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
-->4行5列<--
[[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]]

Numpy 计算

条件运算

stus_score = np.array([[80, 88], [82, 81], [84, 75], [86, 83], [75, 81]])
stus_score > 80
array([[False,  True],
[ True, True],
[ True, False],
[ True, True],
[False, True]])
# 三目运算。 小于80的替换为0,不小于80的替换为90
stus_score = np.array([[80, 88], [82, 81], [84, 75], [86, 83], [75, 81]])
np.where(stus_score < 80, 0, 90)
array([[90, 90],
[90, 90],
[90, 0],
[90, 90],
[ 0, 90]])

统计运算

指定轴最大值amax(参数1: 数组; 参数2: axis=0/1; 0表示列1表示行)

stus_score = np.array([[80, 88], [82, 81], [84, 75], [86, 83], [75, 81]])
# 求每一列的最大值(0表示列)
print("每一列的最大值为:")
result = np.amax(stus_score, axis=0)
print(result) print("每一行的最大值为:")
result = np.amax(stus_score, axis=1)
print(result)
每一列的最大值为:
[86 88]
每一行的最大值为:
[88 82 84 86 81]

指定轴最小值amin

stus_score = np.array([[80, 88], [82, 81], [84, 75], [86, 83], [75, 81]])
# 求每一行的最小值(0表示列)
print("每一列的最小值为:")
result = np.amin(stus_score, axis=0)
print(result) # 求每一行的最小值(1表示行)
print("每一行的最小值为:")
result = np.amin(stus_score, axis=1)
print(result)
每一列的最小值为:
[75 75]
每一行的最小值为:
[80 81 75 83 75]

指定轴平均值mean

stus_score = np.array([[80, 88], [82, 81], [84, 75], [86, 83], [75, 81]])
# 求每一行的平均值(0表示列)
print("每一列的平均值:")
result = np.mean(stus_score, axis=0)
print(result) # 求每一行的平均值(1表示行)
print("每一行的平均值:")
result = np.mean(stus_score, axis=1)
print(result)
每一列的平均值:
[81.4 81.6]
每一行的平均值:
[84. 81.5 79.5 84.5 78. ]

方差std

stus_score = np.array([[80, 88], [82, 81], [84, 75], [86, 83], [75, 81]])
# 求每一行的方差(0表示列)
print("每一列的方差:")
result = np.std(stus_score, axis=0)
print(result) # 求每一行的方差(1表示行)
print("每一行的方差:")
result = np.std(stus_score, axis=1)
print(result)
每一列的方差:
[3.77359245 4.1761226 ]
每一行的方差:
[4. 0.5 4.5 1.5 3. ]

数组运算

stus_score = np.array([[80, 88], [82, 81], [84, 75], [86, 83], [75, 81]])
print("加分前:")
print(stus_score) # 为所有平时成绩都加5分
stus_score[:, 0] = stus_score[:, 0]+5
print("加分后:")
print(stus_score) # 加减乘除类似
加分前:
[[80 88]
[82 81]
[84 75]
[86 83]
[75 81]]
加分后:
[[85 88]
[87 81]
[89 75]
[91 83]
[80 81]]

矩阵运算 np.dot()(非常重要)

  • 计算规则

    (M行, N列) * (N行, Z列) = (M行, Z列)
stus_score = np.array([[80, 88], [82, 81], [84, 75], [86, 83], [75, 81]])
# 平时成绩占40% 期末成绩占60%, 计算结果
q = np.array([[0.4], [0.6]])
result = np.dot(stus_score, q)
print("最终结果为:")
print(result)
最终结果为:
[[84.8]
[81.4]
[78.6]
[84.2]
[78.6]]
  • 矩阵拼接
  • 矩阵垂直拼接
print("v1为:")
v1 = [[0, 1, 2, 3, 4, 5],
[6, 7, 8, 9, 10, 11]]
print(v1)
print("v2为:")
v2 = [[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]]
print(v2)
# 垂直拼接
result = np.vstack((v1, v2))
print("v1和v2垂直拼接的结果为")
print(result)
v1为:
[[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]]
v2为:
[[12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23]]
v1和v2垂直拼接的结果为
[[ 0 1 2 3 4 5]
[ 6 7 8 9 10 11]
[12 13 14 15 16 17]
[18 19 20 21 22 23]]
  • 矩阵水平拼接
print("v1为:")
v1 = [[0, 1, 2, 3, 4, 5],
[6, 7, 8, 9, 10, 11]]
print(v1)
print("v2为:")
v2 = [[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]]
print(v2)
# 垂直拼接
result = np.hstack((v1, v2))
print("v1和v2水平拼接的结果为")
print(result)
v1为:
[[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]]
v2为:
[[12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23]]
v1和v2水平拼接的结果为
[[ 0 1 2 3 4 5 12 13 14 15 16 17]
[ 6 7 8 9 10 11 18 19 20 21 22 23]]

Numpy 基础的更多相关文章

  1. 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片

    概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...

  2. 《利用python进行数据分析》读书笔记--第四章 numpy基础:数组和矢量计算

    http://www.cnblogs.com/batteryhp/p/5000104.html 第四章 Numpy基础:数组和矢量计算 第一部分:numpy的ndarray:一种多维数组对象 实话说, ...

  3. 利用Python进行数据分析——Numpy基础:数组和矢量计算

    利用Python进行数据分析--Numpy基础:数组和矢量计算 ndarry,一个具有矢量运算和复杂广播能力快速节省空间的多维数组 对整组数据进行快速运算的标准数学函数,无需for-loop 用于读写 ...

  4. numpy 基础操作

    Numpy 基础操作¶ 以numpy的基本数据例子来学习numpy基本数据处理方法 主要内容有: 创建数组 数组维度转换 数据选区和切片 数组数据计算 随机数 数据合并 数据统计计算 In [1]: ...

  5. [转]python与numpy基础

    来源于:https://github.com/HanXiaoyang/python-and-numpy-tutorial/blob/master/python-numpy-tutorial.ipynb ...

  6. python学习笔记(三):numpy基础

    Counter函数可以对列表中数据进行统计每一个有多少种 most_common(10)可以提取前十位 from collections import Counter a = ['q','q','w' ...

  7. Numpy基础数据结构 python

    Numpy基础数据结构 NumPy数组是一个多维数组对象,称为ndarray.其由两部分组成: 实际的数据 描述这些数据的元数据 1.一维数组 import numpy as np ar = np.a ...

  8. Python Numpy基础教程

    Python Numpy基础教程 本文是一个关于Python numpy的基础学习教程,其中,Python版本为Python 3.x 什么是Numpy Numpy = Numerical + Pyth ...

  9. NumPy基础操作

    NumPy基础操作(1) (注:记得在文件开头导入import numpy as np) 目录: 数组的创建 强制类型转换与切片 布尔型索引 结语 数组的创建 相关函数 np.array(), np. ...

随机推荐

  1. zabbix基础服务搭建

    监控系统的介绍 性能优化和监控点 1.cpu           调度器          有效的分配cpu的时间片           上下文切换           运行队列            ...

  2. xcode 10 模拟器报错

    xcode 10(也可能是任意版本)run 模拟器时,发现会报下面的错误. This app could not be installed at this time.Could not access ...

  3. 001-JUnit之断言assert

    一.简介以及pom JUnit4.4引入了Hamcrest框架,Hamcest提供了一套匹配符Matcher,这些匹配符更接近自然语言,可读性高,更加灵活: 使用全新的断言语法:assertThat, ...

  4. 2019.04.16 python基础50

    第五十一节  pycharm安装 https://www.jetbrains.com/pycharm/download/#section=windows 这是另一个叫jetbrains公司开发的 默认 ...

  5. 24个 CSS 高级技巧合集

    上期入口:史上最全实用网络爬虫合集! 1.使用CSS复位 CSS复位可以在不同的浏览器上保持一致的样式风格.您可以使用CSS reset 库Normalize等,也可以使用一个更简化的复位方法: ** ...

  6. 学习git之路--1

    1. 在文件内右键选择git.bash2.打开工具后,输入git init 创建.init文件3.git config --global 'sk' 创建用户名4.git config --global ...

  7. hook

    hook的定义 hook,钩子,勾住系统的程序逻辑. 在某段SDK源码逻辑执行的构成中,通过代码手段拦截执行该程序,加入自己的代码逻辑 使用价值 hook是安卓面向切面(aop)编程的基础,可以让我们 ...

  8. apache----------在apache环境下安装https支持

    1.安装mod_ssl  yum install mod_ssl2.修改阿帕奇的配置文件开启3.防火墙要开启443端口4.要把三个证书上传到阿帕奇配置文件下.5.更新 httpd.conf 配置文件 ...

  9. 微信小程序之图片base64解码

    不知道大家在做微信小程序的时候遇到base64解码的问题,我之前在做微信小程序的时候遇到base64解析图片一直有问题,所以在这里把遇到的问题和解决方案在这里记录一下: 在平时的项目中我们是直接用ba ...

  10. 求你显示pdf

    123 <iframe src='http://km.shengaitcm.com/ADC/_layouts/15/WopiFrame.aspx?sourcedoc=%2FADC%2FDocLi ...