Hive的后端存储是HDFS,它对大文件的处理是非常高效的,如果合理配置文件系统的块大小,NameNode可以支持很大的数据量。但是在数据仓库中,越是上层的表其汇总程度就越高,数据量也就越小。而且这些表通常会按日期进行分区,随着时间的推移,HDFS的文件数目就会逐渐增加。
 
小文件带来的问题
 
关于这个问题的阐述可以读一读Cloudera的这篇文章。简单来说,HDFS的文件元信息,包括位置、大小、分块信息等,都是保存在NameNode的内存中的。每个对象大约占用150个字节,因此一千万个文件及分块就会占用约3G的内存空间,一旦接近这个量级,NameNode的性能就会开始下降了。
 
此外,HDFS读写小文件时也会更加耗时,因为每次都需要从NameNode获取元信息,并与对应的DataNode建立连接。对于MapReduce程序来说,小文件还会增加Mapper的个数,每个脚本只处理很少的数据,浪费了大量的调度时间。当然,这个问题可以通过使用CombinedInputFile和JVM重用来解决。
 
Hive小文件产生的原因
 
前面已经提到,汇总后的数据量通常比源数据要少得多。而为了提升运算速度,我们会增加Reducer的数量,Hive本身也会做类似优化——Reducer数量等于源数据的量除以hive.exec.reducers.bytes.per.reducer所配置的量(默认1G)。Reducer数量的增加也即意味着结果文件的增加,从而产生小文件的问题。
解决小文件的问题可以从两个方向入手:
1. 输入合并。即在Map前合并小文件
2. 输出合并。即在输出结果的时候合并小文件
 
配置Map输入合并
 
-- 每个Map最大输入大小,决定合并后的文件数
set mapred.max.split.size=256000000;
-- 一个节点上split的至少的大小 ,决定了多个data node上的文件是否需要合并
set mapred.min.split.size.per.node=100000000;
-- 一个交换机下split的至少的大小,决定了多个交换机上的文件是否需要合并
set mapred.min.split.size.per.rack=100000000;
-- 执行Map前进行小文件合并
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat; 
 
配置Hive结果合并
 
我们可以通过一些配置项来使Hive在执行结束后对结果文件进行合并:
 
hive.merge.mapfiles 在map-only job后合并文件,默认true
hive.merge.mapredfiles 在map-reduce job后合并文件,默认false
hive.merge.size.per.task 合并后每个文件的大小,默认256000000
hive.merge.smallfiles.avgsize 平均文件大小,是决定是否执行合并操作的阈值,默认16000000
 
Hive在对结果文件进行合并时会执行一个额外的map-only脚本,mapper的数量是文件总大小除以size.per.task参数所得的值,触发合并的条件是:
根据查询类型不同,相应的mapfiles/mapredfiles参数需要打开;
结果文件的平均大小需要大于avgsize参数的值。
示例:
 
-- map-red job,5个reducer,产生5个60K的文件。
create table dw_stage.zj_small as
select paid, count (*)
from dw_db.dw_soj_imp_dtl
where log_dt = '2014-04-14'
group by paid;
-- 执行额外的map-only job,一个mapper,产生一个300K的文件。
set hive.merge.mapredfiles= true;
create table dw_stage.zj_small as
select paid, count (*)
from dw_db.dw_soj_imp_dtl
where log_dt = '2014-04-14'
group by paid;
-- map-only job,45个mapper,产生45个25M左右的文件。
create table dw_stage.zj_small as
select *
from dw_db.dw_soj_imp_dtl
where log_dt = '2014-04-14'
and paid like '%baidu%' ;
-- 执行额外的map-only job,4个mapper,产生4个250M左右的文件。
set hive.merge.smallfiles.avgsize=100000000;
create table dw_stage.zj_small as
select *
from dw_db.dw_soj_imp_dtl
where log_dt = '2014-04-14'
and paid like '%baidu%' ;
 
压缩文件的处理
对于输出结果为压缩文件形式存储的情况,要解决小文件问题,如果在Map输入前合并,对输出的文件存储格式并没有限制。但是如果使用输出合并,则必须配合SequenceFile来存储,否则无法进行合并,以下是示例:
 
set mapred.output.compression. type=BLOCK;
set hive.exec.compress.output= true;
set mapred.output.compression.codec=org.apache.hadoop.io.compress.LzoCodec;
set hive.merge.smallfiles.avgsize=100000000;
drop table if exists dw_stage.zj_small;
create table dw_stage.zj_small
STORED AS SEQUENCEFILE
as select *
from dw_db.dw_soj_imp_dtl
where log_dt = '2014-04-14'
and paid like '%baidu%' ;
 
使用HAR归档文件
 
Hadoop的归档文件格式也是解决小文件问题的方式之一。而且Hive提供了原生支持:
 
set hive.archive.enabled= true;
set hive.archive.har.parentdir.settable= true;
set har.partfile.size=1099511627776;
ALTER TABLE srcpart ARCHIVE PARTITION(ds= '2008-04-08', hr= '12' );
ALTER TABLE srcpart UNARCHIVE PARTITION(ds= '2008-04-08', hr= '12' );
 
如果使用的不是分区表,则可创建成外部表,并使用har://协议来指定路径。
 
来源:https://blog.csdn.net/yycdaizi/article/details/43341239

hive小文件合并设置参数的更多相关文章

  1. Hive merge(小文件合并)

    当Hive的输入由非常多个小文件组成时.假设不涉及文件合并的话.那么每一个小文件都会启动一个map task. 假设文件过小.以至于map任务启动和初始化的时间大于逻辑处理的时间,会造成资源浪费.甚至 ...

  2. hive优化之小文件合并

    文件数目过多,会给HDFS带来压力,并且会影响处理效率,可以通过合并Map和Reduce的结果文件来消除这样的影响: set hive.merge.mapfiles = true ##在 map on ...

  3. Hive小文件处理

    小文件是如何产生的: 动态分区插入数据的时候,会产生大量的小文件,从而导致map数量的暴增 数据源本身就包含有大量的小文件 reduce个数越多,生成的小文件也越多 小文件的危害: 从HIVE角度来看 ...

  4. 数仓面试高频考点--解决hive小文件过多问题

    本文首发于公众号:五分钟学大数据 小文件产生原因 hive 中的小文件肯定是向 hive 表中导入数据时产生,所以先看下向 hive 中导入数据的几种方式 直接向表中插入数据 insert into ...

  5. 彻底解决Hive小文件问题

    最近发现离线任务对一个增量Hive表的查询越来越慢,这引起了我的注意,我在cmd窗口手动执行count操作查询发现,速度确实很慢,才不到五千万的数据,居然需要300s,这显然是有问题的,我推测可能是有 ...

  6. HDFS操作及小文件合并

    小文件合并是针对文件上传到HDFS之前 这些文件夹里面都是小文件 参考代码 package com.gong.hadoop2; import java.io.IOException; import j ...

  7. Hadoop MapReduce编程 API入门系列之小文件合并(二十九)

    不多说,直接上代码. Hadoop 自身提供了几种机制来解决相关的问题,包括HAR,SequeueFile和CombineFileInputFormat. Hadoop 自身提供的几种小文件合并机制 ...

  8. Hadoop经典案例(排序&Join&topk&小文件合并)

    ①自定义按某列排序,二次排序 writablecomparable中的compareto方法 ②topk a利用treemap,缺点:map中的key不允许重复:https://blog.csdn.n ...

  9. MR案例:小文件合并SequeceFile

    SequeceFile是Hadoop API提供的一种二进制文件支持.这种二进制文件直接将<key, value>对序列化到文件中.可以使用这种文件对小文件合并,即将文件名作为key,文件 ...

随机推荐

  1. 基于FPGA视频时序生成中的库文件

    上一篇分享了一个视频时序生成代码,下面我根据之前项目中用到的时序,对各个参数做了库文件,方便调用. -- -- Package File Template -- -- Purpose: This pa ...

  2. cycle标签和random两种方式美化表格

    一:cycle标签实现给表格变色 1. <style>标签里写好需要的颜色 2. 在要变色的地方(行/列)加固定的语句,按照顺序依次执行 代码: <!DOCTYPE html> ...

  3. 原生js获取 一个dom元素距离页面可视区域的位置值 -- getBoundingClientRect

    getBoundingClientRect() 这个方法返回一个矩形对象,包含四个属性:left.top.right和bottom.分别表示元素各边与页面上边和左边的距离. var box=docum ...

  4. 1. centos下安装docker

    CentOS Docker 安装 Docker支持以下的CentOS版本: CentOS 7 (64-bit) CentOS 6.5 (64-bit) 或更高的版本 前提条件 目前,CentOS 仅发 ...

  5. 佳佳的Fibonacci

    #include<cstdio> #include<cstring> #include<iostream> #include<cmath> #inclu ...

  6. Log4j 2使用教程二 【详解】

    配置 Log4j 2的配置可以通过4种方式中的1种完成: 1.通过使用XML,JSON,YAML或属性格式编写的配置文件. 2.以编程方式,通过创建一个ConfigurationFactory和配置实 ...

  7. maven 安装m2e 报错

    Eclipse安装maven插件m2e m2e - http://m2eclipse.sonatype.org/sites/m2e m2e-extras - http://m2eclipse.sona ...

  8. python-支付宝支付示例

      项目演示: 1.输入金额 2.扫码支付: 3.支付完成: 4.跳转回商户 一.注册账号 https://openhome.alipay.com/platform/appDaily.htm?tab= ...

  9. 流程控制语句(if switch)

    一.if语句 if(条件){ 代码块1 } else if (条件2) { 代码块2 } else if (条件3) { 代码块3 else { 代码块4 } 当代码执行到这里的时候,先判断条件1的值 ...

  10. IDEA中Git的更新、提交、还原方法

    第一步:在提交项目之前必须先对项目进行更新,此项特别重要,如果不进行更新,别人有项目提交到服务器上,那么你的项目将会提交不上去,使用git解决冲突会比较麻烦,即使你解决了冲突,但是有时候不注意会冲掉别 ...