In my previous post, I introduced various definitions of matrix norms in \(\mathbb{R}^{n \times n}\) based on the corresponding vector norms in \(\mathbb{R}^n\). Meanwhile, the equivalence of different vector norms and their induced metrics and topologies in \(\mathbb{R}^n\) is also inherited into \(\mathbb{R}^{n \times n}\). In this article, we’ll show why the above defined matrix norms are valid.

Generally, the definition of a matrix norm in \(\mathbb{R}^{n \times n}\) should satisfy the following four conditions:

  1. Positive definiteness: for all \(A \in \mathbb{R}^{n \times n}\), \(\norm{A} \geq 0\). \(\norm{A} = 0\) if and only if \(A = 0\).
  2. Absolute homogeneity: for all \(\alpha \in \mathbb{R}\) and \(A \in \mathbb{R}^{n \times n}\), \(\norm{\alpha A} = \abs{\alpha} \norm{A}\).
  3. Triangle inequality: for all \(A, B \in \mathbb{R}^{n \times n}\), \(\norm{A + B} \leq \norm{A} + \norm{B}\).
  4. Sub-multiplicity: for all \(A, B \in \mathbb{R}^{n \times n}\), \(\norm{AB} \leq \norm{A} \norm{B}\).

Therefore, we need to prove the following theorem in order to meet the above requirements.

Theorem Let \(\norm{\cdot}\) be a norm on \(\mathbb{R}^n\). Then for all \(A \in \mathbb{R}^{n \times n}\), its matrix norm \(\zeta: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}\) can be defined as
\[
\zeta(A) = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A \vect{x}}}{\norm{\vect{x}}} = \sup_{\forall \vect{x} \in \mathbb{R}^n, \norm{\vect{x}}=1} \norm{A \vect{x}}
\]

Proof a) Positive definiteness and absolute homogeneity directly inherit from vector norms.

b) The triangle inequality can be proved as following.
\[
\begin{aligned}
\zeta(A + B) &= \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{(A + B) \vect{x}}}{\norm{\vect{x}}} = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A\vect{x} + B\vect{x}}}{\norm{\vect{x}}} \\
& \leq \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A\vect{x}} + \norm{B\vect{x}}}{\norm{\vect{x}}} \leq \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A\vect{x}}}{\norm{\vect{x}}} + \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{B\vect{x}}}{\norm{\vect{x}}} \\
&= \zeta(A) + \zeta(B).
\end{aligned}
\]

c) For sub-multiplicity, we have
\[
\begin{aligned}
\zeta(AB) &= \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{AB\vect{x}}}{\norm{\vect{x}}} = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{AB\vect{x}} \norm{B\vect{x}}}{\norm{B\vect{x}}\norm{\vect{x}}} \\
&\leq \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A\vect{x}}}{\norm{\vect{x}}} \cdot \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{B\vect{x}}}{\norm{\vect{x}}} = \norm{A} \cdot \norm{B}.
\end{aligned}
\]
d) Prove \(\zeta(A) = \sup_{\forall \vect{x} \in \mathbb{R}^n, \norm{\vect{x}} = 1} \norm{A\vect{x}}\).

Note that \(\frac{1}{\norm{\vect{x}}}\) is a scalar value in \(\mathbb{R}\), then with the proved absolute homogeneity, we have
\[
\zeta(A) = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A\vect{x}}}{\norm{\vect{x}}} = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \left\Vert A \cdot \frac{\vect{x}}{\norm{\vect{x}}} \right\Vert.
\]
By letting \(\vect{x}' = \frac{\vect{x}}{\norm{\vect{x}}}\), we have this part proved.

Summarizing a) to d), \(\norm{\cdot}\) is literally a matrix norm induced from the corresponding vector norm.

Next, we prove the validity of the detailed formulations of the matrix norms, i.e.

  1. 1-norm: \(\norm{A}_1 = \max_{1 \leq j \leq n} \sum_{i=1}^n \abs{a_{ij}}\), which is the maximum column sum;
  2. 2-norm: \(\norm{A}_2 = \sqrt{\rho(A^T A)}\), where \(\rho\) represents the spectral radius, i.e. the maximum eigenvalue of \(A^TA\);
  3. \(\infty\)-norm: \(\norm{A}_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^n \abs{a_{ij}}\), which is the maximum row sum.

a) 1-norm: Because
\[
\begin{aligned}
\norm{A\vect{x}}_1 &= \sum_{i=1}^n \left\vert \sum_{j=1}^n a_{ij} x_j \right\vert \leq \sum_{i=1}^n \sum_{j=1}^n \abs{a_{ij} x_j} = \sum_{j=1}^n \left( \abs{x_j} \sum_{i=1}^n \abs{a_{ij}} \right) \\
&\leq \left( \sum_{j=1}^n \abs{x_j} \right) \cdot \max_{1 \leq j \leq n} \left( \sum_{i=1}^n \abs{a_{ij}} \right),
\end{aligned}
\]
we have
\[
\norm{A}_1 \leq \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A\vect{x}}_1}{\norm{\vect{x}}_1} \leq \frac{\left( \sum_{j=1}^n \abs{x_j} \right) \cdot \max_{1 \leq j \leq n} \left( \sum_{i=1}^n \abs{a_{ij}} \right)}{\sum_{j=1}^n \abs{x_j}} = \max_{1 \leq j \leq n} \left( \sum_{i=1}^n \abs{a_{ij}} \right).
\]
Then, we need to show that the maximum value on the right hand side is achievable.

Assume that when \(j = j_0\), \(\sum_{i=1}^n \abs{a_{ij}}\) has the maximum value. If this value is zero, it means \(A\) is a zero matrix and the definition of matrix 1-norm is trivially true. If this value is not zero, by letting \(\vect{x} = (\delta_{ij_0})_{i \geq 1}^n\) with \(\delta_{ij_0}\) being the Kronecker delta, we have
\[
\frac{\norm{A\vect{x}}_1}{\norm{\vect{x}}_1} = \frac{\sum_{i=1}^n \abs{a_{ij_0}}}{1} = \max_{1 \leq j \leq n} \left( \sum_{i=1}^n \abs{a_{ij}} \right).
\]
b) 2-norm: The proof for this part needs the intervention of inner product \(\langle \cdot, \cdot \rangle\) of vectors in \(\mathbb{R}^n\), from which the vector 2-norm can be induced. Then we have
\[
\norm{A}_2 = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \frac{\norm{A\vect{x}}_2}{\norm{\vect{x}}_2} = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \sqrt{\frac{\langle A\vect{x}, A\vect{x} \rangle}{\langle \vect{x}, \vect{x} \rangle}} = \sup_{\forall \vect{x} \in \mathbb{R}^n, \vect{x} \neq 0} \sqrt{\frac{\langle A^*A\vect{x}, \vect{x} \rangle}{\langle \vect{x}, \vect{x} \rangle}},
\]
where \(A^*\) is the adjoint operator, i.e. transpose of \(A\). Therefore, \(A^*A\) is a real valued symmetric matrix which has \(n\) real eigenvalues \(\{\lambda_i\}_{i=1}^n\) with \(0 \leq \lambda_1 \leq \cdots \leq \lambda_n\) and \(n\) corresponding orthonormal eigenvectors \(\{\vect{v}_i\}_{i=1}^n\) (N.B. There may be duplicates in the eigenvalues). For all \(\vect{x} \in \mathbb{R}^n\), it can be expanded as \(\vect{x} = \sum_{i=1}^n a_i \vect{v}_i\) and \(A^*A\vect{x} = \sum_{i=1}^n a_i A^*A \vect{v}_i = \sum_{i=1}^n a_i \lambda_i \vect{v}_i\). Then we have
\[
\begin{aligned}
\langle A^*A\vect{x}, \vect{x} \rangle &= \left\langle \sum_{i=1}^n a_i \lambda_i \vect{v}_i, \sum_{j=1}^n a_j \vect{v}_j \right\rangle = \sum_{i=1}^n \sum_{j=1}^n \lambda_i a_i^2 \langle \vect{v}_i, \vect{v}_j \rangle \\
&= \sum_{i=1}^n \sum_{j=1}^n \lambda_i a_i^2 \delta_{ij} = \sum_{i=1} \lambda_i a_i^2.
\end{aligned}
\]
Meanwhile,
\[
\langle \vect{x}, \vect{x} \rangle = \left\langle \sum_{i=1}^n a_i \vect{v}_i, \sum_{j=1}^n a_j \vect{v}_j \right\rangle = \sum_{i=1}^n \sum_{j=1}^n a_i a_j \langle \vect{v}_i, \vect{v}_j \rangle = \sum_{i=1}^n a_i^2.
\]
Therefore,
\[
\frac{\norm{A\vect{x}}_2}{\norm{\vect{x}}_2} \leq \sqrt{\frac{\lambda_n \sum_{i=1}^n a_i^2}{\sum_{i=1}^n a_i^2}} = \sqrt{\lambda_n}.
\]
By letting \(a_1 = a_2 = \cdots = a_{n-1} = 0\) and \(a_n = 1\), we have \(\frac{\norm{A\vect{x}}_2}{\norm{\vect{x}}_2} = \sqrt{\lambda_n}\). Hence,
\[
\norm{A}_2 = \sqrt{\lambda_n} = \sqrt{\rho(A^*A)}
\]
and the definition of matrix 2-norm is valid.

c) \(\infty\)-norm:
\[
\begin{aligned}
\norm{A\vect{x}}_{\infty} &= \max_{1 \leq i \leq n} \left( \left\vert \sum_{j=1}^n a_{ij} x_j \right\vert \right) \leq \max_{1 \leq i \leq n} \left( \sum_{j=1}^n \abs{a_{ij}} \cdot \abs{x_j} \right) \\
&= \max_{1 \leq i \leq n} \left( \left( \sum_{j=1}^n \abs{a_{ij}} \right) \cdot \left( \max_{1 \leq j \leq n} \abs{x_j} \right) \right) = \left( \max_{1 \leq i \leq n} \sum_{j=1}^n \abs{a_{ij}} \right) \cdot \left( \max_{1 \leq j \leq n} \abs{x_j} \right) \\
\norm{\vect{x}}_{\infty} &= \max_{1 \leq i \leq n} \abs{x_i}
\end{aligned}
\]
Therefore, \(\frac{\norm{A\vect{x}}_{\infty}}{\norm{\vect{x}}_{\infty}} \leq \max_{1 \leq i \leq n} \sum_{j=1}^n \abs{a_{ij}}\). Then, we need to prove this maximum value is achievable.

Assume when \(i = i_0\), \(\sum_{j=1}^n \abs{a_{i_0 j}}\) achieves the maximum. If this value is zero, \(A\) is a zero matrix and the definition of matrix \(\infty\)-norm is trivially true. If this value is not zero, by letting \(\vect{x} = (\sgn(a_{i_0 1}), \cdots, \sgn(a_{i_0 n}))^{\rm T}\), we have \(\norm{\vect{x}}_{\infty} = 1\) and \(\norm{A\vect{x}}_{\infty} = \sum_{j=1}^n \abs{a_{i_0 j}} = \max_{1 \leq i \leq n} \sum_{j=1}^n \abs{a_{ij}}\). Hence, \(\frac{\norm{A\vect{x}}_{\infty}}{\norm{\vect{x}}_{\infty}} = \max_{1 \leq i \leq n} \sum_{j=1}^n \abs{a_{ij}}\) and the definition of \(\infty​\)-norm is valid.

Definition of matrix norms的更多相关文章

  1. James Munkres Topology: Theorem 20.3 and metric equivalence

    Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...

  2. CSharpGL(13)用GLSL实现点光源(point light)和平行光源(directional light)的漫反射(diffuse reflection)

    CSharpGL(13)用GLSL实现点光源(point light)和平行光源(directional light)的漫反射(diffuse reflection) 2016-08-13 由于CSh ...

  3. Numpy应用100问

    对于从事机器学习的人,python+numpy+scipy+matplotlib是重要的基础:它们基本与matlab相同,而其中最重要的当属numpy:因此,这里列出100个关于numpy函数的问题, ...

  4. Opengl的gl_NormalMatrix【转】

    原文地址:http://blog.csdn.net/ichild1964/article/details/9728357 参考:http://www.gamedev.net/topic/598985- ...

  5. Applying Eigenvalues to the Fibonacci Problem

    http://scottsievert.github.io/blog/2015/01/31/the-mysterious-eigenvalue/ The Fibonacci problem is a ...

  6. Matlab norm 用法小记

    Matlab norm 用法小记 matlab norm (a) 用法以及实例 norm(A,p)当A是向量时norm(A,p)   Returns sum(abs(A).^p)^(1/p), for ...

  7. 《Machine Learning》系列学习笔记之第二周

    第二周 第一部分 Multivariate Linear Regression Multiple Features Note: [7:25 - θT is a 1 by (n+1) matrix an ...

  8. 一些矩阵范数的subgradients

    目录 引 正交不变范数 定理1 定理2 例子:谱范数 例子:核范数 算子范数 定理3 定理4 例子 \(\ell_2\) <Subgradients> Subderivate-wiki S ...

  9. subgradients

    目录 定义 上镜图解释 次梯度的存在性 性质 极值 非负数乘 \(\alpha f(x)\) 和,积分,期望 仿射变换 仿梯度 混合函数 应用 Pointwise maximum 上确界 suprem ...

随机推荐

  1. nuxt npm run dev 报错Solution to the "Error: listen EADDRINUSE 127.0.0.1:8080"

    Solution to the "Error: listen EADDRINUSE 127.0.0.1:8080" Hello, Just sharing a solution t ...

  2. 使用Excel VBA编程将网点的百度坐标转换后标注到高德地图上

    公司网点表存储的坐标是百度坐标,现需要将网点位置标注到高德地图上,研究了一下高德地图的云图数据模版 http://lbs.amap.com/yuntu/reference/cloudstorage和坐 ...

  3. JSP中EL很常用,怎样使用大于号、小于号、等于号等

    JSP中EL很常用,怎样使用大于号.小于号.等于号等   符号 在EL中使用 常规 1 等于 eq == 2 不等于 ne != 3 大于 gt > 4 小于 lt < 5 大于等于 ge ...

  4. SpringBoot入门:Hello World

    1.Open IDEA,choose "New-->Project" 2.Choose "Spring Initializr" 3. Choose jav ...

  5. 实验二 Java面向对象程序设计实验报告

    实验二 Java面向对象程序设计 实验内容 1.初步掌握单元测试和TDD 2.理解并掌握面向对象三要素:封装.继承.多态 3.初步掌握UML建模 4.熟悉S.O.L.I.D原则 5.了解设计模式 实验 ...

  6. Linux记录-sftp上传大文件

    1.Alt +P 进入sftp会话 2.pwd显示linux目录 lpwd显示windows目录 3.lcd切换windows目录 cd切换linux目录 4.put上传 5.get下载 6.help ...

  7. 【Unity游戏开发】记一次解决 LuaFunction has been disposed 的bug的过程

    一.引子 RT,本篇博客记录的是马三的一次解决 LuaFunction has been disposed 的bug的全过程,事情还要从马三的自研框架 ColaFrameWork 说起.最近,马三在业 ...

  8. CentOS7设置ssh服务以及端口修改

    很多时候我们都是通过SSH 服务 来对 Linux 进行操作,而不是直接来操作Linux机器,包括对Linux服务器的操作,因此,设置SSH服务对于学习Linux来说属于必备技能(尤其是运维人员),关 ...

  9. H5_0004:JS设置循环debugger的方法

    在HTML页面加上如下代码,则PC打开控制台后,就会循环debugger,防止调试代码. <script>eval(function (p, a, c, k, e, r) { e = fu ...

  10. PMP知识点(一)——风险登记册

    一.Reference: [管理心得之四十八]<风险登记册>本身的风险 问题日志与风险登记册的区别与联系 PMBOK重要概念梳理之二十六 风险登记册 风险登记单-MBAlib 二.Atta ...