传送门——Vjudge


要求\(S = \sum\limits_{i=1}^n fib_i^k \mod 10^9+9\)

将通项公式\(fib_i = \frac{1}{\sqrt{5}} ((\frac{1 + \sqrt{5}}{2})^i - (\frac{1 - \sqrt{5}}{2})^i)\)代入,可以得到

\(\begin{align*} S & = (\frac{1}{\sqrt{5}})^k \sum\limits_{i=1}^n ((\frac{1 + \sqrt{5}}{2})^i - (\frac{1 - \sqrt{5}}{2}) ^ i)^k \\ & = (\frac{1}{\sqrt{5}})^k \sum\limits_{i=1}^n \sum\limits_{j=0}^k (-1)^j \binom{k}{j}(\frac{1 + \sqrt{5}}{2})^{i(k-j)} (\frac{1 - \sqrt{5}}{2})^{ij} \\ &= (\frac{1}{\sqrt{5}})^k \sum\limits_{j=0}^k (-1)^j \binom{k}{j} \sum\limits_{i=1}^n [(\frac{1 + \sqrt{5}}{2})^{k-j} (\frac{1 - \sqrt{5}}{2})^j]^i \end{align*}\)

因为\(5\)在\(\mod 10^9+9\)意义下有二次剩余,所以\(\sqrt{5}\)有实际值,那么我们可以从小到大枚举\(j\),维护\(\binom{k}{j}\),后面的那一个部分就是一个等比数列求和。注意特别判断公比为\(1\)的情况。

如果\(5\)在某些模数下没有二次剩余,因为\(a \sqrt{5}+b\)在上述需要的运算中是封闭的,所以我们可以开一个pair\((a,b)\)表示\(a\sqrt{5}+b\),用这一个pair进行运算。

#include<bits/stdc++.h>
//This code is written by Itst
using namespace std;

#define int long long
inline int read(){
    int a = 0;
    char c = getchar();
    bool f = 0;
    while(!isdigit(c) && c != EOF){
        if(c == '-')
            f = 1;
        c = getchar();
    }
    if(c == EOF)
        exit(0);
    while(isdigit(c)){
        a = a * 10 + c - 48;
        c = getchar();
    }
    return f ? -a : a;
}

const int MOD = 1e9 + 9 , INV2 = (MOD + 1) >> 1;
int K , L;

template < class T >
T poww(T a , int b){
    T times = 1;
    while(b){
        if(b & 1) times = times * a % MOD;
        a = a * a % MOD;
        b >>= 1;
    }
    return times;
}

struct PII{
    int st , nd;
    PII(int _st = 0 , int _nd = 0) : st(_st) , nd(_nd){}
    PII operator =(int b){return *this = PII(b , 0);}
    bool operator !=(PII a){return st != a.st || nd != a.nd;}
};
PII operator +(PII a , PII b){return PII((a.st + b.st) % MOD , (a.nd + b.nd) % MOD);}
PII operator -(PII a , PII b){return PII((a.st + MOD - b.st) % MOD , (a.nd + MOD - b.nd) % MOD);}
PII operator *(PII a , PII b){return PII((a.st * b.st + 5 * a.nd * b.nd) % MOD , (a.st * b.nd + a.nd * b.st) % MOD);}
PII operator *(PII a , int b){return PII(a.st * b % MOD , a.nd * b % MOD);}
PII operator %(PII a , int b){return a;}
PII operator /(PII a , PII b){return a * PII(b.st , MOD - b.nd) * poww((b.st * b.st - 5 * b.nd * b.nd % MOD + MOD) % MOD , MOD - 2);}

int solve(int x , int k){
    PII all(0 , 0);
    int C = 1 , sgn = poww(MOD - 1 , k);
    for(int j = 0 ; j <= k ; ++j){
        PII cur = poww(PII(INV2 , INV2) , j) * poww(PII(INV2 , MOD - INV2) , k - j);
        if(cur != PII(1 , 0))
            all = all + (poww(cur , x + 1) - PII(1 , 0)) / (cur - PII(1 , 0)) * sgn * C;
        else
            all = all + PII((x + 1) % MOD , 0) * sgn * C;
        C = C * (k - j) % MOD * poww(j + 1 , MOD - 2) % MOD;
        sgn = sgn * (MOD - 1) % MOD;
    }
    all = all * poww(PII(0 , poww(5ll , MOD - 2)) , k);
    return all.st;
}

signed main(){
    for(int T = read() ; T ; --T){
        L = read(); K = read();
        printf("%lld\n" , solve(L , K));
    }
    return 0;
}

ZOJ3774 Power of Fibonacci 斐波那契、二项式定理的更多相关文章

  1. Java Fibonacci 斐波那契亚

    Java Fibonacci 斐波那契亚 /** * <html> * <body> * <P> Copyright 1994-2018 JasonInternat ...

  2. 递归算法之Fibonacci 斐波那契数列第n个数的求解

    Fibonacci 斐波那契数列第n个数的求解,也可以用递归和非递归的形式实现,具体如下,dart语言实现. int fibonacci(int n) { if (n <= 0) throw S ...

  3. 算法导论-求(Fibonacci)斐波那契数列算法对比

    目录 1.斐波那契数列(Fibonacci)介绍 2.朴素递归算法(Naive recursive algorithm) 3.朴素递归平方算法(Naive recursive squaring) 4 ...

  4. lintcode:Fibonacci 斐波纳契数列

    题目: 斐波纳契数列 查找斐波纳契数列中第 N 个数. 所谓的斐波纳契数列是指: 前2个数是 0 和 1 . 第 i 个数是第 i-1 个数和第i-2 个数的和. 斐波纳契数列的前10个数字是: 0, ...

  5. Fibonacci(斐波那契数列)的最佳实践方式(JavaScript)

    1)低级版本 var fibonacci = function(n) { if (n == 0 || n == 1) { return n; } else { return fibonacci(n - ...

  6. fibonacci 斐波那契数列

    1.小兔子繁殖问题  (有该问题的详细来由介绍) 2.台阶问题 题目:一个人上台阶可以一次上一个或者两个,问这个人上n层的台阶,一共有多少种走法. 递归的思路设计模型: i(台阶阶数)         ...

  7. 斐波那契数列(Fibonacci) iOS

    斐波那契数列Fibonacci 斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2 ...

  8. 如何使用Python输出一个[斐波那契数列]

    如何使用Python输出一个[斐波那契数列]Fibonacci 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonac ...

  9. 牛客多校第九场 && ZOJ3774 The power of Fibonacci(二次剩余定理+斐波那契数列通项/循环节)题解

    题意1.1: 求\(\sum_{i=1}^n Fib^m\mod 1e9+9\),\(n\in[1, 1e9], m\in[1, 1e4]\) 思路1.1 我们首先需要知道斐波那契数列的通项是:\(F ...

随机推荐

  1. Docker系列07—Dockerfile 详解

    本文收录在容器技术学习系列文章总目录 1.认识Dockerfile 1.1 镜像的生成途径 基于容器制作  dockerfile,docker build 基于容器制作镜像,已经在上篇Docker系列 ...

  2. 找到bug的根源,问五次为什么

    在学习<问题分析与解决>时学到了一种找到问题根源的方法——问五次为什么.具体内容是:当遇到一个问题,不要只看当前答案,要继续往下问,为什么,连问五次,就能够找到更深层次的问题.最近在复盘b ...

  3. Linux下Oracle client客户端安装

    0.zip格式 (0)下载地址: a.Oracle官网 (1)安装过程: a.将zip文件分别解压到/software/下,放在同一个目录instandclient_11_2/下 b.在/softwa ...

  4. 第55章 API资源 - Identity Server 4 中文文档(v1.0.0)

    此类建模API资源. Enabled 指示此资源是否已启用且可以请求.默认为true. Name API的唯一名称.此值用于内省身份验证,并将添加到传出访问令牌的受众. DisplayName 该值可 ...

  5. mybatis报错:Caused by: java.lang.IllegalArgumentException: Caches collection already contains value for com.crm.dao.PaperUserMapper

    一.问题 eclipse启动时报下面的错误: Caused by: java.lang.IllegalArgumentException: Caches collection already cont ...

  6. springboot新手使用guns开源框架心得

    一.导航 以guns的通知管理为例 l  通知管理的请求地址是localhost:8080/notice l  程序收到这样的请求就去找地址为notice的Controller l  通知控制器收到这 ...

  7. 第五课 Css3旋转放大属性,正六边形的绘制

    ---恢复内容开始--- 一.效果 二.知识点 1.background-color: rgba(0,0,0,.4);   (红色.绿色.蓝色.透明度(0-1)) 2.position: absolu ...

  8. win10更新系统后,无法远程访问的bug

    win10更新系统后,无法远程访问其它电脑(服务器),同时关于其它的远程服务也将无法使用(打印机……) 是因为win10自动更新的时候安装了KB4103718插件 解决办法: 1.手动卸掉KB4103 ...

  9. arcgis api 3.x for js 入门开发系列十叠加 SHP 图层(附源码下载)

    前言 关于本篇功能实现用到的 api 涉及类看不懂的,请参照 esri 官网的 arcgis api 3.x for js:esri 官网 api,里面详细的介绍 arcgis api 3.x 各个类 ...

  10. 在OQL上使用UPDLOCK锁定查询结果,安全的更新实体数据

    SqlServer查询记录的时候提供多种锁定方式,其中UPDLOCK 的优点是允许您读取数据(不阻塞其它事务)并在以后更新数据,同时确保自从上次读取数据后数据没有被更改.当我们用UPDLOCK来读取记 ...