一、前述

L1正则,L2正则的出现原因是为了推广模型的泛化能力。相当于一个惩罚系数。

二、原理

L1正则:Lasso Regression

L2正则:Ridge Regression

总结:

经验值 MSE前系数为1 ,L1 , L2正则前面系数一般为0.4~0.5 更看重的是准确性。

L2正则会整体的把w变小。

L1正则会倾向于使得w要么取1,要么取0 ,稀疏矩阵 ,可以达到降维的角度。

ElasticNet函数(把L1正则和L2正则联合一起):

总结:

1.默认情况下选用L2正则。

2.如若认为少数特征有用,可以用L1正则。

3.如若认为少数特征有用,但特征数大于样本数,则选择ElasticNet函数。

 代码一:L1正则

# L1正则
import numpy as np
from sklearn.linear_model import Lasso
from sklearn.linear_model import SGDRegressor X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1) lasso_reg = Lasso(alpha=0.15)
lasso_reg.fit(X, y)
print(lasso_reg.predict(1.5)) sgd_reg = SGDRegressor(penalty='l1')
sgd_reg.fit(X, y.ravel())
print(sgd_reg.predict(1.5))

代码二:L2正则

# L2正则
import numpy as np
from sklearn.linear_model import Ridge
from sklearn.linear_model import SGDRegressor X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1) #两种方式第一种岭回归
ridge_reg = Ridge(alpha=1, solver='auto')
ridge_reg.fit(X, y)
print(ridge_reg.predict(1.5))#预测1.5的值
#第二种 使用随机梯度下降中L2正则
sgd_reg = SGDRegressor(penalty='l2')
sgd_reg.fit(X, y.ravel())
print(sgd_reg.predict(1.5))

代码三:Elastic_Net函数

# elastic_net函数
import numpy as np
from sklearn.linear_model import ElasticNet
from sklearn.linear_model import SGDRegressor X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)
#两种方式实现Elastic_net
elastic_net = ElasticNet(alpha=0.1, l1_ratio=0.5)
elastic_net.fit(X, y)
print(elastic_net.predict(1.5)) sgd_reg = SGDRegressor(penalty='elasticnet')
sgd_reg.fit(X, y.ravel())
print(sgd_reg.predict(1.5))

【机器学习】--线性回归中L1正则和L2正则的更多相关文章

  1. 【机器学习】--鲁棒性调优之L1正则,L2正则

    一.前述 鲁棒性调优就是让模型有更好的泛化能力和推广力. 二.具体原理 1.背景 第一个更好,因为当把测试集带入到这个模型里去.如果测试集本来是100,带入的时候变成101,则第二个模型结果偏差很大, ...

  2. 贝叶斯先验解释l1正则和l2正则区别

    这里讨论机器学习中L1正则和L2正则的区别. 在线性回归中我们最终的loss function如下: 那么如果我们为w增加一个高斯先验,假设这个先验分布是协方差为 的零均值高斯先验.我们在进行最大似然 ...

  3. L1正则和L2正则的比较分析详解

    原文链接:https://blog.csdn.net/w5688414/article/details/78046960 范数(norm) 数学上,范数是一个向量空间或矩阵上所有向量的长度和大小的求和 ...

  4. L1正则与L2正则

    L1正则是权值的绝对值之和,重点在于可以稀疏化,使得部分权值等于零. L1正则的含义是 ∥w∥≤c,如下图就可以解释为什么会出现权值为零的情况. L1正则在梯度下降的时候不可以直接求导,可以有以下几种 ...

  5. L1 正则 和 L2 正则的区别

    L1,L2正则都可以看成是 条件限制,即 $\Vert w \Vert \leq c$ $\Vert w \Vert^2 \leq c$ 当w为2维向量时,可以看到,它们限定的取值范围如下图: 所以它 ...

  6. 大白话5分钟带你走进人工智能-第十四节过拟合解决手段L1和L2正则

                                                                               第十四节过拟合解决手段L1和L2正则 第十三节中, ...

  7. 大白话5分钟带你走进人工智能-第十五节L1和L2正则几何解释和Ridge,Lasso,Elastic Net回归

    第十五节L1和L2正则几何解释和Ridge,Lasso,Elastic Net回归 上一节中我们讲解了L1和L2正则的概念,知道了L1和L2都会使不重要的维度权重下降得多,重要的维度权重下降得少,引入 ...

  8. 机器学习中L1,L2正则化项

    搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不 ...

  9. Spark2.0机器学习系列之12: 线性回归及L1、L2正则化区别与稀疏解

    概述 线性回归拟合一个因变量与一个自变量之间的线性关系y=f(x).       Spark中实现了:       (1)普通最小二乘法       (2)岭回归(L2正规化)       (3)La ...

随机推荐

  1. Redis 常用命令总结

    连接操作相关的命令 quit:关闭连接(connection) auth:简单密码认证 持久化 save:将数据同步保存到磁盘 bgsave:将数据异步保存到磁盘 lastsave:返回上次成功将数据 ...

  2. promisify,promisifyAll,promise.all实现原理

    1.promisify function toPrimisify (fn){ return function (...args){      return new Promise(function(r ...

  3. Java的四种引用——强引用、软引用、弱引用、虚引用

    目录 强引用 软引用 弱引用 虚引用 强引用 拥有强引用的对象永远不会被GC,可以根据引用的get方法获取到被引用对象 软引用 在内存充足的额时候,拥有软引用的对象不会被GC:即将内存溢出的时候,会对 ...

  4. 通过命令行操作MYSQL的方法 以及导入大的SQL备份文件

    运行  输入CMD 进入 命令行窗口 输入Mysql.exe的路径  如:c:/wamp/bin/mysql.exe  回车 这时出现 welcome to the mysql ...的提示  进入成 ...

  5. 使用Js进行linq处理

    需要引用的文件 <script src="~/js/linq/jquery.linq-vsdoc.js"></script><script src=& ...

  6. mysql 语法积累

    1.把一个表中的某一列赋值到另一个表中的某一列 update sfa_token,sfa_member set sfa_token.mainid = sfa_member.mainid where s ...

  7. centos7安装可视化界面

    使用VMWare安装好centos7镜像后开始安装centos桌面. 一.输入命令 yum groupinstall "GNOME Desktop" "Graphical ...

  8. Ajax刷新DIV内容

    Ajax刷新DIV内容 实现了网页的异步数据处理,不用刷新整个页面 <标签 onmouseover="method"/ >method:这个参数是处理onmouseov ...

  9. 限制oracle某用户仅能从某IP登录

    system用户创建触发器,登录后触发检查 CREATE OR REPLACE TRIGGER system.check_ip_addresses_test AFTER logon ON DATABA ...

  10. 两层fragment嵌套时出现空白,(收藏别人的)

    完美解决 两层Fragment,内层空白 转载:http://blog.csdn.net/bingospunky/article/details/51352400 目录(?)[+] 前言 两层Frag ...