[再寄小读者之数学篇](2014-06-22 积分不等式 [中国科学技术大学2012年高等数学B考研试题])
函数 $f(x)$ 在 $[0,1]$ 上单调减, 证明: 对于任何 $\al\in (0,1)$, $$\bex \int_0^\al f(x)\rd x\geq \al \int_0^1 f(x)\rd x. \eex$$
证明: 设 $$\bex F(x)=\cfrac{\int_0^\al f(x)\rd x}{\al}, \eex$$ 则 $$\bex F'(x)=\cfrac{f(\al)\al-\int_0^\al f(x)\rd x}{\al^2} =\cfrac{\int_0^\al [f(\al)-f(x)]\rd x}{\al^2}\leq 0. \eex$$ 于是 $$\bex F(\al)\geq F(1)=\int_0^1 f(x)\rd x,\quad 0<\al<1. \eex$$
[再寄小读者之数学篇](2014-06-22 积分不等式 [中国科学技术大学2012年高等数学B考研试题])的更多相关文章
- [再寄小读者之数学篇](2014-06-23 积分不等式 [中国科学技术大学2013年高等数学B 考研试题])
设 $f(x)$ 在 $[a,b]$ 上一阶连续可导, $f(a)=0$. 证明: $$\bex \int_a^b f^2(x)\rd x\leq \cfrac{(b-a)^2}{2}\int_a^b ...
- [再寄小读者之数学篇](2014-06-22 发散级数 [中国科学技术大学2012年高等数学B考研试题])
设 $a_n>0$, $S_n=a_1+a_2+\cdots+a_n$, 级数 $\dps{\vsm{n}a_n}$ 发散, 证明: $\dps{\vsm{n}\cfrac{a_n}{S_n}} ...
- [再寄小读者之数学篇](2014-06-22 最大值点处导数为零的应用 [中国科学技术大学2012 年高等数学B考研试题])
设 $f(x)$ 在 $[0,1]$ 上连续, 在 $(0,1)$ 内可导, 且 $f(0)=f(1)=0$, $f\sex{\cfrac{1}{2}}=1$. 证明:对于任意的实数 $\lm$, 一 ...
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
随机推荐
- Docker: 构建Nginx,PHP,Tomcat基础镜像
Usage: docker build [OPTIONS] PATH | URL | - [flags] Options: -t, --tag list # 镜像名称 -f, --file strin ...
- 利用BLKTRACE分析IO性能
在Linux系统上,如果I/O发生性能问题,有没有办法进一步定位故障位置呢?iostat等最常用的工具肯定是指望不上的,[容易被误读的iostat]一文中解释过await表示单个I/O所需的平均时间, ...
- SQL SUM() 函数
SUM() 函数 SUM 函数返回数值列的总数(总额). SQL SUM() 语法 SELECT SUM(column_name) FROM table_name SQL SUM() 实例 我们拥有下 ...
- day18-网络编程基础(一)
勿骄勿燥,还是要定下心学习,还有有些没定下心 1.基础知识 2.tcp与udp协议 3.网络套接字 4.基于c/s结构的服务器客户端的实验 开始今日份总结 1.基础知识 现有的软件,绝大多数是基于C/ ...
- (八)Index and Query a Document
Let’s now put something into our customer index. We’ll index a simple customer document into the cus ...
- dede 5.7 任意用户重置密码前台
返回了重置的链接,还要把&删除了,就可以重置密码了 结果只能改test的密码,进去过后,这个居然是admin的密码,有点头大,感觉这样就没有意思了 我是直接上传的一句话,用菜刀连才有乐趣 ...
- Luogu5058 [ZJOI2004]嗅探器
$Luogu5058 [ZJOI2004]嗅探器 给定一张 \(n\) 个点, \(m\) 条边的无向图,和两点 \(s,\ t\) ,求 \(s\to t\) 编号最小的必经点(排除 \(s,\ t ...
- MyBatis 学习总结 01 快速入门
本文测试源码下载地址: http://onl5wa4sd.bkt.clouddn.com/MyBatis0918.rar 一.Mybatis介绍 MyBatis是一个支持普通SQL查询,存储过程和高级 ...
- 基于C#的socket编程的TCP异步实现
一.摘要 本篇博文阐述基于TCP通信协议的异步实现. 二.实验平台 Visual Studio 2010 三.异步通信实现原理及常用方法 3.1 建立连接 在同步模式中,在服务器上使用Accept方法 ...
- 简单介绍Excel单元格行列指示的实现原理(俗称聚光灯功能)
原始出处:www.cnblogs.com/Charltsing/p/CellLight.html QQ:564955427 Excel单元格行列指示的实现原理(俗称聚光灯功能) 单元格行列指示功能在录 ...