若仅保留这$k$个点仍然有环,那么显然无解。

否则设$A$表示这$k$个点的集合,$B$表示剩下的点的集合,因为是竞赛图,每个集合内部的拓扑关系是一条链,方便起见将所有点按照在所在集合的链上的位置进行重标号。

对于$B$中每个点$i$,求出$l_i$表示最小的$j$,满足$B_i\rightarrow A_j$有边,再求出$r_i$表示最大的$j$,满足$A_j\rightarrow B_i$有边。

那么需要保留$B$中尽可能多的点,满足对于任意两个点$B_j,B_i(j\leq i)$都有$r_j<l_i$,不然就会有环,即$l_i>\max(r_j)(j\leq i)$。

考虑DP,设$f[i][j]$表示考虑$B$中前$i$个点,前面选择的点的$r$的最大值为$j$时最多可以选择几个点,暴力转移即可。

时间复杂度$O(n^2)$。

#include<cstdio>
const int N=2010,BUF=12000000;
char Buf[BUF],*buf=Buf;
int n,m,i,j,x,y,l[N],r[N],L,R,a[N],ca,b[N],cb,q[N],h,t,d[N],cnt;bool g[N][N],vip[N];
int f[N][N],ans;
inline void read(int&a){for(a=0;*buf<48;buf++);while(*buf>47)a=a*10+*buf++-48;}
void toposort(int S){
for(i=1;i<=n;i++)d[i]=0;
for(i=1;i<=n;i++)if(vip[i]==S)for(j=1;j<=n;j++)if(vip[j]==S)d[j]+=g[i][j];
for(h=i=1,t=cnt=0;i<=n;i++)if(vip[i]==S){
cnt++;
if(!d[i])q[++t]=i;
}
while(h<=t)for(x=q[h++],i=1;i<=n;i++)if(vip[i]==S&&g[x][i])if(!(--d[i]))q[++t]=i;
}
inline void up(int&a,int b){a<b?(a=b):0;}
inline int max(int a,int b){return a>b?a:b;}
int main(){
fread(Buf,1,BUF,stdin);read(n),read(m);
for(i=1;i<=n;i++)for(j=1;j<=n;j++)read(x),g[i][j]=x;
for(i=1;i<=m;i++)read(x),vip[x]=1;
toposort(1);
if(t<cnt)return puts("impossible"),0;
for(i=1;i<=cnt;i++)a[++ca]=q[i];
toposort(0);
for(i=1;i<=cnt;i++)b[++cb]=q[i];
for(i=1;i<=ca;i++)d[a[i]]=i;
for(i=1;i<=cb;i++){
x=b[i];
L=ca+1,R=0;
for(j=1;j<=n;j++)if(vip[j]){
y=d[j];
if(g[x][j]){
if(y<L)L=y;
}else if(y>R)R=y;
}
for(j=0;j<=ca;j++)f[i][j]=f[i-1][j];
if(L>R)for(j=0;j<L;j++)up(f[i][j>R?j:R],f[i-1][j]+1);
}
for(j=0;j<=ca;j++)up(ans,f[cb][j]);
ans=cb-ans;
if(ans>=m)puts("impossible");else printf("%d",ans);
return 0;
}

  

BZOJ5412 : circle的更多相关文章

  1. [翻译svg教程]svg中的circle元素

    svg中的<circle> 元素,是用来绘制圆形的,例如 <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink= ...

  2. 设计一个程序,程序中有三个类,Triangle,Lader,Circle。

    //此程序写出三个类,triangle,lader,circle:其中triangle类具有类型为double的a,b,c边以及周长,面积属性, //具有周长,面积以及修改三边的功能,还有判断能否构成 ...

  3. c++作业:Circle

    Circle Github链接

  4. Modified Least Square Method and Ransan Method to Fit Circle from Data

    In OpenCv, it only provide the function fitEllipse to fit Ellipse, but doesn't provide function to f ...

  5. [javascript svg fill stroke stroke-width circle 属性讲解] svg fill stroke stroke-width circle 属性 绘制圆形及引入方式讲解

    <!DOCTYPE html> <html lang='zh-cn'> <head> <title>Insert you title</title ...

  6. (1)编写一个接口ShapePara,要求: 接口中的方法: int getArea():获得图形的面积。int getCircumference():获得图形的周长 (2)编写一个圆类Circle,要求:圆类Circle实现接口ShapePara。 该类包含有成员变量: radius:public 修饰的double类型radius,表示圆的半径。 x:private修饰的double型变量x,

    package com.hanqi.test; //创建接口 public interface ShapePara { //获取面积的方法 double getArea(); //获取周长的方法 do ...

  7. 东大oj-1591 Circle of friends

    题目描述 Nowadays, "Circle of Friends" is a very popular social networking platform in WeChat. ...

  8. svg学习(四)circle

    <circle> 标签 < <?xml version="1.0" standalone="no"?> <!DOCTYPE ...

  9. 后缀数组 --- WOj 1564 Problem 1564 - A - Circle

    Problem 1564 - A - Circle Problem's Link:   http://acm.whu.edu.cn/land/problem/detail?problem_id=156 ...

随机推荐

  1. Writage让你的Word支持Markdown

    Writage 简单的执行后,word就可以在保存或打开的时候支持Markdown了!

  2. MATLAB cftool工具数据拟合结果好坏判断

    SSE和RMSE比较小 拟合度R接近于1较好 * 统计参数模型的拟合优度 1.误差平方和(SSE) 2. R-Square(复相关系数或复测定系数) 3. Adjusted R-Square(调整自由 ...

  3. 原生JS实现banner图的滚动与跳转

    HTML部分: <div id="banner"> <!--4张滚动的图片--> <div id="inside"> < ...

  4. R猜拳游戏解释

    R猜拳游戏解释 作者:梁 蓉 猜拳游戏大概解释: 搜集齐数据框,for循环在三个随机数里抽俩个,抽出的数据放回,继续抽取剪刀石头布,机器人出剪刀石头布,我出对应压制机器人的方法来赢取胜利,我给机器人发 ...

  5. MYSQL数据库的设计与调优

    优化思路: 1.检查数据表结构,改善不完善设计 2.跑一遍主要业务,收集常用的数据库查询SQL 3.分析查询SQL,适当拆分,添加索引等优化查询 4.优化SQL的同时,优化代码逻辑 5.添加本地缓存和 ...

  6. 深入web的请求过程

    一.深入web的请求过程 1.1.B/S网络架构概述 · 从前端到后端,都基于应用层协议HTTP来交互数据.一个请求就对应了一个操作,完成操作之后就断开了连接.基于这样的特点可以用来满足海量的用户的操 ...

  7. 软件测试为什么需要学习Linux的知识?Linux学到什么程度?-log5

    ​软件测试为什么需要学习Linux的知识?学到什么程度?-log5 Dotest软件测试学堂-董浩 公司目前90%的服务器操作系统不是Windows,而是Linux(RedHat.Debian.Cen ...

  8. python 中 dlib库的安装

    安装 dlib 库的时候需要用到 CMake 进行本地编译,而Cmake又是基于Visual Studio运行的,我在装这个库的时候,各种找不到教程,就想着分享一下自己的经验. 32位 python3 ...

  9. P5300 [GXOI/GZOI2019]与或和

    题目地址:P5300 [GXOI/GZOI2019]与或和 考虑按位计算贡献 对于 AND 运算,只有全 \(1\) 子矩阵才会有贡献 对于 OR 运算,所以非全 \(0\) 子矩阵均有贡献 如果求一 ...

  10. iframe父页面和子页面调用

    我在页面中使用iframe标签,有的时候就需要两个页面交互 <iframe id="Iframe"  src="{{url('field/user')}}" ...