Mapreduce概述和WordCount程序
一、Mapreduce概述
Mapreduce是分布式程序编程框架,也是分布式计算框架,它简化了开发!
Mapreduce将用户编写的业务逻辑代码和自带默认组合整合成一个完整的分布式运算程序,并发的运行在hadoop集群上。
二、Mapreduce优缺点
优点:1.易于编程:只用实现几个接口即可完成一个并发的程序。
2.良好的拓展性:再不行当前程序运行的情况下,可以通过增加节点来解决用户/数据扩展,计算量增加的问题。
3.高容错性:可以运行在廉价的集群机器上。
4.适合处理PB级别以上的离线处理。
缺点:1.不擅长做实时计算、流式计算。
2.不支持DAG(有向图)计算,有依赖的程序(spark支持)。
3.每次把计算结果写入磁盘当中,造成磁盘io,性能较低。
三、Mapreduce编程思想
需求:统计一个200M的单词文件,查询出每个单词出现的次数。
思想:1.将200M的文件切分为两块,128M和72M;
2.将两块文件分别交给两个maptask处理,对数据进行读取,切分,封装,然后传输到reducetask;
3.reducetask将数据再次整合,累加,输出到结果文件中。
注意:mapreduce中的所有maptask都是并行运行的,reducetask也是,
但是reducetask的运行要依赖maptask的输出。
四、WordCount程序
/**
* @author: PrincessHug
* @date: 2019/3/24, 0:52
* @Blog: https://www.cnblogs.com/HelloBigTable/
*/
public class WordCountMapper extends Mapper<LongWritable, Text,Text, IntWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//读取数据
String line = value.toString(); //切分数据
String[] fields = line.split(" "); //传输数据
for (String f:fields){
context.write(new Text(f),new IntWritable(1));
}
}
} public class WordCountReducer extends Reducer<Text, IntWritable,Text,IntWritable> {
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
//累加
int sum = 0;
for (IntWritable i:values){
sum += i.get();
}
//输出
context.write(key,new IntWritable(sum));
}
} public class WordCountDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//配置,job对象
Configuration conf = new Configuration();
Job job = Job.getInstance(); //设置运行类
job.setJarByClass(WordCountDriver.class); //设置Mapper,Reducer类
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class); //设置Mapper输出数据类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class); //设置Reducer输出数据类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); //设置输入输出流
FileInputFormat.setInputPaths(job,new Path("G:\\mapreduce\\wordcount\\in"));
FileOutputFormat.setOutputPath(job,new Path("G:\\mapreduce\\wordcount\\out")); //提交任务
if (job.waitForCompletion(true)){
System.out.println("运行完成!");
}else {
System.out.println("运行失败!");
} } }
Mapreduce概述和WordCount程序的更多相关文章
- 021_在Eclipse Indigo中安装插件hadoop-eclipse-plugin-1.2.1.jar,直接运行wordcount程序
1.工具介绍 Eclipse Idigo.JDK1.7-32bit.hadoop1.2.1.hadoop-eclipse-plugin-1.2.1.jar(自己网上下载) 2.插件安装步骤 1)将ha ...
- 020_自己编写的wordcount程序在hadoop上面运行,不使用插件hadoop-eclipse-plugin-1.2.1.jar
1.Eclipse中无插件运行MP程序 1)在Eclipse中编写MapReduce程序 2)打包成jar包 3)使用FTP工具,上传jar到hadoop 集群环境 4)运行 2.具体步骤 说明:该程 ...
- hadoop2.7.x运行wordcount程序卡住在INFO mapreduce.Job: Running job:job _1469603958907_0002
一.抛出问题 Hadoop集群(全分布式)配置好后,运行wordcount程序测试,发现每次运行都会卡住在Running job处,然后程序就呈现出卡死的状态. wordcount运行命令:[hado ...
- Yarn集群的搭建、Yarn的架构和WordCount程序在集群提交方式
一.Yarn集群概述及搭建 1.Mapreduce程序运行在多台机器的集群上,而且在运行是要使用很多maptask和reducertask,这个过程中需要一个自动化任务调度平台来调度任务,分配资源,这 ...
- Hadoop入门实践之从WordCount程序说起
这段时间需要学习Hadoop了,以前一直听说Hadoop,但是从来没有研究过,这几天粗略看完了<Hadoop实战>这本书,对Hadoop编程有了大致的了解.接下来就是多看多写了.以Hado ...
- MapReduce概述,原理,执行过程
MapReduce概述 MapReduce是一种分布式计算模型,运行时不会在一台机器上运行.hadoop是分布式的,它是运行在很多的TaskTracker之上的. 在我们的TaskTracker上面跑 ...
- Hadoop(十二)MapReduce概述
前言 前面以前把关于HDFS集群的所有知识给讲解完了,接下来给大家分享的是MapReduce这个Hadoop的并行计算框架. 一.背景 1)爆炸性增长的Web规模数据量 2)超大的计算量/计算复杂度 ...
- Hadoop下WordCount程序
一.前言 在之前我们已经在 CenOS6.5 下搭建好了 Hadoop2.x 的开发环境.既然环境已经搭建好了,那么现在我们就应该来干点正事嘛!比如来一个Hadoop世界的HelloWorld,也就是 ...
- Hadoop集群测试wordcount程序
一.集群环境搭好了,我们来测试一下吧 1.在java下创建一个wordcount文件夹:mkdir wordcount 2.在此文件夹下创建两个文件,比如file1.txt和file2.txt 在fi ...
随机推荐
- Django+Vue打造购物网站(十一)
第三方登录 微博创建应用,修改回调地址 http://open.weibo.com/authentication 安装第三方登录插件 https://github.com/python-social- ...
- PHP 5.6 中 Automatically populating $HTTP_RAW_POST_DATA is deprecated and will be removed in a future version
解决方法 找到php.ini 文件, 把always_populate_raw_post_data 修改为-1 就行了. always_populate_raw_post_data=-1
- pta寒假作业3
题目三:捉老鼠啊,亏了还是赚了 实验代码 #include <stdio.h> #include <stdlib.h> int main(void) { ...
- Python并发编程之IO模型
目录 IO模型介绍 阻塞IO(blocking IO) 非阻塞IO(non-blocking IO) IO多路复用 异步IO IO模型比较分析 selectors模块 一.IO模型介绍 Stevens ...
- vue---组件间通信
vue中比较重要的就是组件了.而组件随处可复用的特性,使得组件通信非常重要.那么组件之间通讯方式有哪些呢? 第一种:父子组件通讯: 如果是 html页面 中全局注册的组件 和 实例中局部注册的组件 H ...
- nodejs和npm的关系【转】
node.js是javascript的一种运行环境,是对Google V8引擎进行的封装.是一个服务器端的javascript的解释器. 包含关系: nodejs中含有npm,比如说你安装好nodej ...
- flyway和liquibase的使用样例
在代码上我们有svn和git等诸多的版本控制方法. 但是在数据库上却没有相应的工具.一度导致多环境见的数据库同步难以维持. flyway和liquibase都是常见的数据库版本控制工具. flyway ...
- Django 反向解析
#1,定义: #随着功能的增加会出现更多的视图,可能之前配置的正则表达式不够准确,于是就要修改正则表达式,但是正则表达式一旦修改了,之前所有对应的超链接都要修改,真是一件麻烦的事情,而且可能还会漏掉一 ...
- MySql存储过程及函数
存储过程和函数类似于Java中的方法. ⒈存储过程 一组预先编译好的sql语句的集合,理解成批处理语句. 好处: ①提高代码的重用性 ②简化操作 ③减少了编译次数并且减少了和数据库服务器的连接次数,提 ...
- 【转】Python3 操作符重载方法
Python3 操作符重载方法 本文由 Luzhuo 编写,转发请保留该信息. 原文: http://blog.csdn.net/Rozol/article/details/70769628 以下代码 ...