网上看到关于数据降维的文章不少,介绍MDS的却极少,遂决定写一写。

考虑一个这样的问题。我们有n个样本,每个样本维度为m。我们的目标是用不同的新的k维向量(k<<m)替代原来的n个m维向量,使得在新的低维空间中,所有样本相互之间的距离等于(或最大程度接近)原空间中的距离(默认欧氏距离)。

举个栗子:原来有3个4维样本(1,0,0,3),(8,0,0,5),(2,0,0,4),显然我们可以用三个新的二维样本(1,3),(8,5),(2,4)来保持维度变小并相互之间距离不变。

那么问题来了,如果不是这么明显的数据该如何来处理?降维后的距离一定会相等吗?

MDS算法给出了在给定k值条件下的最优解决方案。

首先我们计算所有原空间中样本相互之间的距离平方矩阵Dist[][],显然这是一非负对称实数矩阵。至此,其实我们要维护的就是Dist不变,与原样本已经无关了。

接下来我们要根据Dist推算出目标降维后内积矩阵B,B[i][j]就是降维后第i,j个向量的内积。关于推导过程可以看相关书籍,这里给出一个优美的结论。

  B[i][j]=-0.5(Dist[i][j] - avg(Disti[i]) - avg(Distj[j]) + avg_Dist)

有了B,只需要对B分解成B=U*UT的形式就达到我们的目标了。

对B做特征分解(奇异分解也一样),B=V*diag*VT。

我们可以取最大的k个特征值及其对应的特征向量构成diagk和Vk

此时U=Vk*diagk0,5就是我们降维后的n个行向量组成的矩阵了。

如果还有疑惑,下面的代码运行试试就明白了。

召唤算法君:

import numpy as np

# run this to get a test matrix
# A = np.random.randint(1,100,(5,20))
# np.save('mat.npy', A)
# exit() A = np.load('mat.npy') n,m = A.shape
Dist = np.zeros((n,n))
B = np.zeros((n,n))
for i in range(n):
for j in range(n):
Dist[i][j] = sum((ix-jx)**2 for ix,jx in zip(A[i], A[j])) disti2 = np.array([0]*n)
distj2 = np.array([0]*n) for x in range(n):
disti2[x] = np.mean([Dist[x][j] for j in range(n)])
distj2[x] = np.mean([Dist[i][x] for i in range(n)]) distij2 = np.mean([Dist[i][j] for i in range(n) for j in range(n)]) for i in range(n):
for j in range(n):
B[i][j] = -0.5*(Dist[i][j] - disti2[i] - distj2[j] + distij2) w,v = np.linalg.eig(B) v=v.transpose() U = [{'eVal':w[i], 'eVec':v[i]} for i in range(n)] U.sort(key = lambda obj:obj.get('eVal'), reverse = True)
k=4
w=np.array([0]*k)
v=np.zeros((k,n)) for i in range(k):
w[i] = U[i].get('eVal')**0.5
v[i] = U[i].get('eVec') ans = np.dot(v.transpose(), np.diag(w)) ans_dist = np.zeros((n,n))
for i in range(n):
ans_str=""
for j in range(n):
ans_dist[i][j] = sum((ix-jx)**2 for ix,jx in zip(ans[i], ans[j])) print("Orign dis[][] is :")
print Dist
print("MDS dis[][] is :")
print(ans_dist)

数据降维之多维缩放MDS(Multiple Dimensional Scaling)的更多相关文章

  1. python大战机器学习——数据降维

    注:因为公式敲起来太麻烦,因此本文中的公式没有呈现出来,想要知道具体的计算公式,请参考原书中内容 降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中 1.主成分分析(PCA) 将n ...

  2. TSNE数据降维学习【转载】

    转自:https://blog.csdn.net/u012162613/article/details/45920827 https://www.jianshu.com/p/d6e7083d7d61 ...

  3. 斯坦福机器学习视频笔记 Week8 无监督学习:聚类与数据降维 Clusting & Dimensionality Reduction

    监督学习算法需要标记的样本(x,y),但是无监督学习算法只需要input(x). 您将了解聚类 - 用于市场分割,文本摘要,以及许多其他应用程序. Principal Components Analy ...

  4. 吴裕雄 python 机器学习——多维缩放降维MDS模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  5. Coursera《machine learning》--(14)数据降维

    本笔记为Coursera在线课程<Machine Learning>中的数据降维章节的笔记. 十四.降维 (Dimensionality Reduction) 14.1 动机一:数据压缩 ...

  6. 数据降维技术(1)—PCA的数据原理

    PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降 ...

  7. 初识PCA数据降维

    PCA要做的事降噪和去冗余,其本质就是对角化协方差矩阵. 一.预备知识 1.1 协方差分析 对于一般的分布,直接代入E(X)之类的就可以计算出来了,但真给你一个具体数值的分布,要计算协方差矩阵,根据这 ...

  8. 数据降维技术(2)—奇异值分解(SVD)

    上一篇文章讲了PCA的数据原理,明白了PCA主要的思想及使用PCA做数据降维的步骤,本文我们详细探讨下另一种数据降维技术—奇异值分解(SVD). 在介绍奇异值分解前,先谈谈这个比较奇怪的名字:奇异值分 ...

  9. 用TSNE进行数据降维并展示聚类结果

    TSNE提供了一种有效的数据降维方式,让我们可以在2维或3维的空间中展示聚类结果. # -*- coding: utf-8 -*- from __future__ import unicode_lit ...

随机推荐

  1. kafka配置记录

    1. 准备三台机器,系统CentOs6 2. 安装好JDK和zookeeper 参考: zookeeper配置记录 3. 解压安装包到指定目录 tar -zxvf kafka_2.12-2.1.0.t ...

  2. nodejs body-parser 解析post数据

    安装 $ npm install body-parser API var bodyPaeser =require('body-parser') 可以通过body-parser 对象创建中间件,当接收到 ...

  3. 原生JS编写兼容IE6,7,8浏览器无缝自动轮播(带按钮切换)

    项目要求页面兼容IE6,7,8等浏览器,我们可能会遇到这个轮播效果,轮播板块要求:无限循环.自动轮播和手动切换功能,每一次滚动一小格,网上有很多这类插件,例如:swiper等! 但是很多都是不兼容IE ...

  4. z-tree 回显所有选中的id

    //回显选择的checkbox函数 function treeHxIdFun(obj) { var objTree = $.fn.zTree.init($("#demo"), se ...

  5. Dynamics 365-为什么CRM环境Workflow执行了多次?

    Workflow执行了多次,这个现象如果排除业务逻辑冲突,人为失误等原因,可能有的人遇到的并不多,但是笔者时不时还能遇到这种情况,所以在这里做个记录,也给遇到相同问题的人一个解决的方法. 当一个Wor ...

  6. Access denied for user 'root'@'localhost' (using password:YES) Mysql5.7

    解决方案: (1) 打开MySQL目录下的my.ini文件,在文件的最后添加一行“skip-grant-tables”,保存并关闭文件.(my.ini在C:\ProgramData\MySQL\MyS ...

  7. Scrapped or attached views may not be recycled

    在使用recycleView的时候出现了错误Scrapped or attached views may not be recycled 原因: view没有被recycled,recyclerVie ...

  8. SQLServer数据库维护(一)碎片检查整理

    一.碎片查看维护 dbcc showcontig('表名') dbcc showcontig ('T_NOFITSTUDY') 结果如下: DBCC SHOWCONTIG 正在扫描 'T_NOFITS ...

  9. C# Debug和release判断用法

    C# Debug和release判断用法 #if (!DEBUG) Response.Write("DEBUG下运行");#else Response.Write("re ...

  10. C#基础第六天

    数组 方法  实现代码的重用  参数  返回值  注释  return 语法:[public] static 返回值类型 方法名([参数列表]){ 方法体;}public:访问修饰符,公开的,公共的s ...