跳台阶
  
  

  题目描述

  一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
  
  思路:典型的动态规划问题,动态规划问题最关键的是把事件中的各种情形抽象为状态,然后找到前后状态之间的关系,写出状态转化方程,再翻译为代码。
    可以考虑到题目中跳到第n层台阶有多少种跳法为一个状态,设置一个辅助数组dp[n+1],dp[i]代表跳到第i层台阶的跳法总数。
    因为一次只能跳1层或2层,那么dp[i]仅与dp[i-1]和dp[i-2]有关系。dp[i-1]可以通过跳一层得到dp[i],而dp[i-2]可以通过跳两层得到dp[i]。
    所以状态转化方程为:
        dp[i] = dp[i-1]+dp[i-2];
    
    最后考虑边界条件:dp[1]= 1,dp[2] = 2;
    
     public int JumpFloor(int target) {
if(target<=2) return target;
int[] dp = new int[target+1];
dp[1] = 1;
dp[2] = 2;
for(int i=3;i<=target;i++){
dp[i] = dp[i-1]+dp[i-2]*2;
}
return dp[target];
}

    

 跳台阶2

  

  一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
  
  思路:此时条件变化为一次可以跳n步,则dp[i]与前面的状态都有关系。有了上面的基础,可以轻松写出状态转移方程为:
    

              

  

     public int JumpFloorII(int target) {
if(target<=2) return target;
int[] dp = new int[target+1];
dp[1] = 1;
dp[2] = 2; for(int i=3;i<=target;i++){
//因为可以一步跳到
dp[i] = 1;
for(int j=1;j<i;j++){
dp[i] += dp[j];
}
}
return dp[target];
}

跳台阶(JAVA)的更多相关文章

  1. 08.青蛙跳台阶 Java

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路 暴力枚举(自顶向下递归): 若台阶数小于等于0,返回0: 若台阶 ...

  2. 09.变态跳台阶 Java

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路 0:0 1:(1) 2:(1,1)(2) 3:(1,1,1)(2,1)( ...

  3. 【Java】 剑指offer(9) 斐波那契数列及青蛙跳台阶问题

     本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项 ...

  4. 算法笔记_046:跳台阶问题(Java)

    目录 1 问题描述 2 解决方案 2.1 递归法 2.2 迭代法   1 问题描述 一个台阶总共有n级,如果一次可以跳1级,也可以跳2级,求总共有多少种跳法. 2 解决方案 2.1 递归法 如果整个台 ...

  5. 青蛙跳台阶(Fibonacci数列)

    问题 一只青蛙一次可以跳上 1 级台阶,也可以跳上2 级.求该青蛙跳上一个n 级的台阶总共有多少种跳法. 思路 当n=1时,只有一种跳法,及f(1)=1,当n=2时,有两种跳法,及f(2)=2,当n= ...

  6. 剑指offer例题——跳台阶、变态跳台阶

    题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: n<=0时,有0种跳法 n=1时,只有一种跳法 n=2时,有 ...

  7. (1)剑指Offer之斐波那契数列问题和跳台阶问题

    一 斐波那契数列 题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 问题分析: 可以肯定的是这一题通过递归的方式是肯定能做出来,但是这样会有 ...

  8. 剑指 Offer 10- II. 青蛙跳台阶问题

    剑指 Offer 10- II. 青蛙跳台阶问题 Offer 10- II 题目描述: 动态规划方程: 循环求余: 复杂度分析: package com.walegarrett.offer; impo ...

  9. [剑指OFFER] 斐波那契数列- 跳台阶 变态跳台阶 矩形覆盖

    跳台阶 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. class Solution { public: int jumpFloor(int number) ...

随机推荐

  1. 多线程之 Thread类

    一.多线程第一种方式的实现步骤(继承Thread类) 代码演示: 1.定义MyThread类,继承Thread类 2.重写了里面的run方法,在run方法中定义线程要执行的任务 public clas ...

  2. ERROR: Cannot load message class for [speech_control/command]. Are your messages built?

    ubuntu14.04 ROS indigo 问题: 执行查看指定消息的命令,出现下面的错误提示,找不到该消息类型. ~$ rostopic echo /speech/command ERROR: C ...

  3. JS一些简单的问题

    冒泡排序1 <script> //冒泡排序:把一组数据按照从大到小,或者从小到大的进行一定的排序 //从小到大排序 var num=[10,2,58,3,56,4,12]; //比较轮数 ...

  4. 简单hibernate框架测试

    -jar包 -日志配置文件: -实体类: package cn.itcast.domain; public class Customer { private Long cust_id; //客户编号 ...

  5. Mac下安装Fiddler

    Mac下安装Fiddler 1.Mono安装 安装程序可以从http://www.mono-project.com/download地址下载. 安装完成后,打开Terminal终端,在terminal ...

  6. Problem C: 平面上的点和线——Point类、Line类 (III)

    Description 在数学上,平面直角坐标系上的点用X轴和Y轴上的两个坐标值唯一确定,两点确定一条线段.现在我们封装一个“Point类”和“Line类”来实现平面上的点的操作. 根据“append ...

  7. webpack-dev-server报错

    运行npm run dev报错,---- webpack-dev-server --inline --progress --config build/webpack.dev.conf.js npm E ...

  8. Python第八章(北理国家精品课 嵩天等)

    程序设计方法 8.1体育竞技分析实例 from random import random def printIntro(): print("这个程序模拟两个选手A和B的某种竞技比赛" ...

  9. OpenGL 3D旋转的木箱

    学习自: https://learnopengl-cn.github.io/01%20Getting%20started/08%20Coordinate%20Systems/#3d 0,首先添加glm ...

  10. Docker多主机互联最佳实践

    在公司使用docker多主机互联时碰到了各种坑.搞清楚后才发现如此简单,以下是根据实际经验的总结. 版本信息 Client: Version: 18.09.0 API version: 1.39 Go ...