题意

给出\(n\)维直角坐标系中\(n + 1\)个点的坐标,它们都在一个\(n\)维球面上,求球心坐标。

题解

设球面上某两个点坐标为\((a_1, a_2, ... a_n)\)和\((b_1, b_2, ... b_n)\),则可以列出方程:

\[(x_1 - a_1)^2 + (x_2 - a_2)^2 + ... + (x_n - a_n)^2 = (x_1 - b_1)^2 + (x_2 - b_2)^2 + ... + (x_n - b_n)^2
\]

括号打开化简得

\[2*(a_1 - b_1)x_1 + 2*(a_2 - b_2)x_2 + ... + 2*(a_n - b_n)x_n = a_1^2 - b_1^2 + a_2^2 - b_2^2 + ... + a_n^2 - b_n^2
\]

这样可得n个方程,然后高斯消元即可。

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#define space putchar(' ')
#define enter putchar('\n')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
} const int N = 20;
int n;
double g[N][N], f[N][N]; int main(){
/*
下面以样例输入为例,模拟一下高斯消元的过程。
样例输入:
2
0.0 0.0
-1.0 1.0
1.0 0.0
*/
scanf("%d", &n);
for(int i = 1; i <= n + 1; i++)
for(int j = 1; j <= n; j++)
scanf("%lf", &g[i][j]);
//首先,我们构造一个矩阵来表示n个方程。
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++){
f[i][j] = 2 * (g[i][j] - g[i + 1][j]);
f[i][n + 1] += g[i][j] * g[i][j] - g[i + 1][j] * g[i + 1][j];
}
/*
上一步中,我们构造出了n个方程,分别是:
2 * x[1] - 2 * x[2] = -2
-4 * x[1] + 2 * x[2] = 1
写成矩阵的形式就是:
2 -2 -2
-4 2 1
这个矩阵存在f[][]数组中。
*/
for(int i = 1; i <= n; i++){
//这次循环,我们以x[i]为主元。
int l = i;
for(int j = i + 1; j <= n; j++)
if(fabs(f[j][i]) > fabs(f[l][i])) l = j;
if(l != i)
for(int j = i; j <= n + 1; j++)
swap(f[i][j], f[l][j]);
//上一步中,我们找出了主元系数绝对值最大的一个方程,把它换到第i行(据说这么做精度能高一些)
/*
程序第一次执行到这里的时候,矩阵变成了
-4 2 1
2 -2 -2
*/
for(int j = n + 1; j >= i; j--) //因为循环内要用到当前的f[i][i],所以f[i][i]最后修改
f[i][j] /= f[i][i]; //将主元系数变为1,方程中其他项系数也等比例扩大/缩小。
for(int j = i + 1; j <= n; j++)
for(int k = n + 1; k >= i; k--) //因为循环内要用到当前的f[j][i],所以f[j][i]最后修改
f[j][k] -= f[i][k] * f[j][i];
/*
将第i个方程的每项系数扩大/缩小,使得主元系数和第j个方程主元系数相同
然后第j个方程 -= 第i个方程,这样第j个方程就消去了当前主元。
*/
/*
程序第一次进行到这一步的时候,矩阵变成了
1 -0.5 -0.25
0 -1 -1.5
第二次则变成了
1 -0.5 -0.25
0 1 1.5
*/
}
for(int i = n; i; i--) //循环到i的时候,f[i][n + 1]表示的已经是最后的解x[i]
for(int j = 1; j < i; j++)
f[j][n + 1] -= f[j][i] * f[i][n + 1]; //将x[i]带入到第j个方程中
for(int i = 1; i <= n; i++)
printf("%.3lf%c", f[i][n + 1], " \n"[i == n]); return 0;
}

BZOJ 1013 | 一份写了一堆注释的高斯消元题解的更多相关文章

  1. BZOJ 3143 Luogu P3232 [HNOI2013]游走 (DP、高斯消元)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3143 (luogu) https://www.luogu.org/pro ...

  2. 【BZOJ 3143】【Hnoi2013】游走 期望+高斯消元

    如果纯模拟,就会死循环,而随着循环每个点的期望会逼近一个值,高斯消元就通过列方正组求出这个值. #include<cstdio> #include<cctype> #inclu ...

  3. BZOJ 2844 albus就是要第一个出场(高斯消元)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2844 题意: 给出一个长度为n的正整数数列A.每次选出A的一个子集进行抑或(空集抑或值为 ...

  4. BZOJ 3270 博物馆 && CodeForces 113D. Museum 期望概率dp 高斯消元

    大前提,把两个点的组合看成一种状态 x 两种思路 O(n^7) f[x]表示在某一个点的前提下,这个状态经过那个点的概率,用相邻的点转移状态,高斯一波就好了 O(n^6) 想象成臭气弹,这个和那个的区 ...

  5. bzoj 1778: [Usaco2010 Hol]Dotp 驱逐猪猡【dp+高斯消元】

    算是比较经典的高斯消元应用了 设f[i]为i点答案,那么dp转移为f[u]=Σf[v]*(1-p/q)/d[v],意思是在u点爆炸可以从与u相连的v点转移过来 然后因为所有f都是未知数,高斯消元即可( ...

  6. [BZOJ 1013][JSOI 2008] 球形空间产生器sphere 题解(高斯消元)

    [BZOJ 1013][JSOI 2008] 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面 ...

  7. BZOJ 1013 & 高斯消元

    题意: 告诉你一个K维球体球面上的K+1个点问球心坐标. sol: 乍一看还以为是K维的二分答案然后判断距离...真是傻逼了...你看乱七八糟的题目做多了然后就会忘记最有用的基本计算... 我们可以看 ...

  8. BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...

  9. 【高斯消元】BZOJ 1013: [JSOI2008]球形空间产生器sphere

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁 ...

随机推荐

  1. Android Library开发注意事项

    Android Library开发注意事项 App Module添加依赖Android Library时可以设置library的优先级, 在编译时,app按照library从低到高的优先级依次与每个l ...

  2. Linux命令的那些事(二)

    回顾Linux(一) 学习了以下命令: mkdir/rmdir/ls/rm/pwd/cd/touch/tree/man/--help 想具体了解请看上一篇文章跳转 在Linux中推荐大家使用subli ...

  3. [C++]typedef用法

    参考:C/C++ typedef用法详解(真的很详细) 四个用途 定义一种类型的别名,而不是简单的宏替换 定义struct新对象的别名 定义和平台无关的类型 为复杂声明定义一个简单的别名 typede ...

  4. Netty源码分析第4章(pipeline)---->第5节: 传播outbound事件

    Netty源码分析第五章: pipeline 第五节: 传播outBound事件 了解了inbound事件的传播过程, 对于学习outbound事件传输的流程, 也不会太困难 在我们业务代码中, 有可 ...

  5. 高可用OpenStack(Queen版)集群-14.Openstack集成Ceph准备

    参考文档: Install-guide:https://docs.openstack.org/install-guide/ OpenStack High Availability Guide:http ...

  6. 方正 ignb路由器设置备份(自用笔记)

    192.168.15.96255.255.255.0192.168.15.1219.232.46.61219.141.136.10

  7. react + antiDesign开发中遇到的问题记录

    react + antiDesign开发中遇到的问题记录 一:页面中子路由失效: antiDesign的官方实例中,会把路由重复的地方给去重,而且路由匹配模式不是严格模式.所以我们需要在util.js ...

  8. 软件工程-东北师大站-第十次作业(PSP)

    1.本周PSP 2.本周进度条 3.本周累计进度图 代码累计折线图 博文字数累计折线图 4.本周PSP饼状图

  9. 迎来OO的曙光,总结规格的意义——OO第四次博客总结

    一切都要结束了,砥砺前行~ 一.测试与正确性论证的效果差异 测试,顾名思义就是我们暴力用大量数据轰炸编写的程序的过程.日常的OO过程中,我们经常互相寻求“测试集”,正是因为测试使用特定数据对我们的功能 ...

  10. 跟踪调试Linux内核的启动过程

    跟踪调试Linux内核的启动过程---使用gdb 符钰婧 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/UST ...