hdoj 1027 Ignatius and the Princess II 【逆康托展开】
Ignatius and the Princess II
you can work them out, I will release the Princess, or you will be my dinner, too." Ignatius says confidently, "OK, at last, I will save the Princess."
"Now I will show you the first problem." feng5166 says, "Given a sequence of number 1 to N, we define that 1,2,3...N-1,N is the smallest sequence among all the sequence which can be composed with number 1 to N(each number can be and should be use only once
in this problem). So it's easy to see the second smallest sequence is 1,2,3...N,N-1. Now I will give you two numbers, N and M. You should tell me the Mth smallest sequence which is composed with number 1 to N. It's easy, isn't is? Hahahahaha......"
Can you help Ignatius to solve this problem?
file.
6 4
11 8
1 2 3 5 6 4
1 2 3 4 5 6 7 9 8 11 10
注意:由于1000的阶乘太大,并且M小于等于10000,所以我们仅仅须要算到阶乘大于10000的为就能够了,也就是8。。之后推断是不是第八位的特殊推断就可以。
代码:
#include <stdio.h>
#include <string.h>
int a[9] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320};
int vis[1005];
int main(){
int n, m;
while(scanf("%d%d", &n, &m) == 2){
memset(vis, 0, sizeof(vis));
m -= 1;
int cou, temp = 1;
while(temp < n){
if((n - temp) <= 8){
int s = m/a[n-temp];
int p = m%a[n-temp];
int c = 0;
for(int i = 1; i <= n; i ++){
if(!vis[i]) ++c;
if((c-1) == s){
printf("%d ", i);
vis[i] = 1; break;
}
}
m = p;
}
else{
for(int i = 1; i <= n; i ++){
if(!vis[i]) {
vis[i] = 1;
printf("%d ", i); break;
}
}
}
++temp;
}
for(int i = 1; i <= n; i ++){
if(!vis[i]) printf("%d\n", i);
}
}
return 0;
}
hdoj 1027 Ignatius and the Princess II 【逆康托展开】的更多相关文章
- HDU 1027 Ignatius and the Princess II(康托逆展开)
Ignatius and the Princess II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ( ...
- HDU 1027 Ignatius and the Princess II(求第m个全排列)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1027 Ignatius and the Princess II Time Limit: 2000/10 ...
- HDU - 1027 Ignatius and the Princess II 全排列
Ignatius and the Princess II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ( ...
- HDU 1027 Ignatius and the Princess II[DFS/全排列函数next_permutation]
Ignatius and the Princess II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ( ...
- poj 1027 Ignatius and the Princess II全排列
Ignatius and the Princess II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ( ...
- hdu 1027 Ignatius and the Princess II(正、逆康托)
题意: 给N和M. 输出1,2,...,N的第M大全排列. 思路: 将M逆康托,求出a1,a2,...aN. 看代码. 代码: int const MAXM=10000; int fac[15]; i ...
- 【HDOJ】1027 Ignatius and the Princess II
这道题目最开始完全不懂,后来百度了一下,原来是字典序.而且还是组合数学里的东西.看字典序的算法看了半天才搞清楚,自己仔细想了想,确实也是那么回事儿.对于长度为n的数组a,算法如下:(1)从右向左扫描, ...
- HDU 1027 Ignatius and the Princess II 选择序列题解
直接选择序列的方法解本题,可是最坏时间效率是O(n*n),故此不能达到0MS. 使用删除优化,那么就能够达到0MS了. 删除优化就是当须要删除数组中的元素为第一个元素的时候,那么就直接移动数组的头指针 ...
- HDU 1027 - Ignatius and the Princess II
第 m 大的 n 个数全排列 DFS可过 #include <iostream> using namespace std; int n,m; ]; bool flag; ]; void d ...
随机推荐
- selenium 加载jquery
packagecom.example.tests; import staticorg.junit.Assert.*; importjava.util.*; importorg.junit.*; imp ...
- TP框架中APP_SUB_DOMAIN_DEPLOY什么意思?
'APP_SUB_DOMAIN_DEPLOY' => false, // 是否开启子域名部署 thinkphp开启域名部署/子域名部署/泛域名部署/IP访问部署 Think ...
- 关于SimHash去重原理的理解(能力工场小马哥)
阅读目录 1. SimHash与传统hash函数的区别 2. SimHash算法思想 3. SimHash流程实现 4. SimHash签名距离计算 5. SimHash存储和索引 6. SimHas ...
- SettingsEclipse
迁移时间--2017年5月20日08:45:07 CreateTime--2016年11月15日11:07:44Author:Marydon --------------------------- ...
- ORA-27090 故障一例
近期的alert日志中碰到了ORA-27090的错误信息.其错误提示为Unable to reserve kernel resources for asynchronous disk I/O.依据这个 ...
- memcached 下载安装
wget http://memcached.org/latest tar -zxvf memcached-1.x.x.tar.gz cd memcached-1.x.x ./configure &am ...
- 全球免费知名DNS服务器
全球免费知名DNS服务器 jalone 2013-06-18 14:25:46 最近老是发表DNS相关文章,今天继续说DNS,国内75%以上的家用宽带路由器存在严重的安全隐患:用户浏览网页的时候其DN ...
- nnCron LITE
nnCron LITE is a small, but full-featured scheduler that can start applications and open documents a ...
- Linux密钥认证错误解决
问题描述: Xshell用key认证登录,提示所选的用户密钥未在远程主机上注册 问题解决: 查看日志/var/log/secure,基本上都是用户根目录的权限问题 根据日志提示: Authentica ...
- 关于iOS 类扩展Extension的进一步理解
很多人可能会问 iOS的分类和扩展的区别,网上很多的讲解,但是一般都是分类讲的多,而这也是我们平常比较常用的知识:但是,对于扩展,总觉得理解的朦朦胧胧,不够透彻. 这里就讲一下我自己的理解,但是这个 ...