Excel Sheet Column Title

本题收获:

1.由int型转换为整型(string),如何转化, res = 'A'+(n-1)%26和之前由A-z转化为十进制相反,res = s[i]-'A'+1.(为什么有+1,-1还有点迷糊,貌似是十进制是0-9,26进制是)

2.十进制到26进制转化

  题目: 

  Given a positive integer, return its corresponding column title as appear in an Excel sheet.

  For example:

    1 -> A
2 -> B
3 -> C
...
26 -> Z
27 -> AA
28 -> AB

  思路:

    我的思路:十进制转化为26进制,但是不知道怎么将数字转化为字母

         或者利用hash映射

    leetcode/discuss思路:思路1:十进制转化为26进制

               思路2:有hash的,但是看上去比较复杂

  代码:

  代码1:思路1代码

 string convertToTitle(int n) {
string res="";
while(n>){
res=char('A'+(n-)%)+res; //将数字转化为字母,每次加的上个res位置要在右边,如果是res+char(),则高地位发生变化
n=(n-)/;
}
return res;
}

  注意:1.数字转化为字母

     2.高地位

  举例来看代码:

    28(AB)  第一次循环: res =  'A' + 1= B  n = 1

            第二次循环:res = 'A' + +B = AB  n = 0

           结束循环 返回AB

  0位减1的原因:假如输入的数字为A  那么第一次循环 结果应该为 res = 'A' 

         如果没有减1 那么第一次循环结果为 res = 'A' + 1 = 'B' 出错。

  代码2:思路2

  我的测试代码:代码有main函数

  

 #include "stdafx.h"
#include "iostream"
#include "string"
using namespace std; class MyClass
{
public:
string coverttoTitle(int n)
{
string res = "";
while (n)
{
res = char('A' + (n - ) % ) + res;
n = (n - ) / ;
}
return res;
}
}; int _tmain(int argc, _TCHAR* argv[])
{
int n;
while (true)
{
cin >> n;
string m;
MyClass solution;
m = solution.coverttoTitle(n); //第一次将m定义成了int型,出错:error C2440: “=”: 无法从“std::string”转换为“int”
cout << m << endl;
}
system("pause");
return ;
}

  运行结果:

  aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAbwAAAEmCAIAAACWL7KtAAAgAElEQVR4nOy9d3QbV4Kne3HedJ85692Z8e6+7jOv7bacrcikwCSJVGImwZwTCAKMIHLOsVBIhZwzc5JIKlm2ZUmWZCs59LTd7di222l3Okz3zNvpfvvP+6MAECRBWZ3WntP3O9/RAQpVF7cK4E/31r1VAE888cxDf/fw9//xBxod+ulnX3z62RdffPk//nQ//z/jF19l9LM/3c+/+uzzr37++Zdf42fr4kdvgz//4pOff57y408/S/rzjz/5+c82+CnuRx9v8pMPf4b78Yc/+/iDjz7+4KOfvf/hz97/8KP3PvjovQ8+fO/9D997/8N33//g3fc/ePe9hD997/2E777/03ff/0nC936y/njdd7b63vvvvPf+O+9/8M6HH7zz0YfvfPzRO5989M4nH73z6UfvfPrRO5989M7PPnz7ww/efv/9t9977+1333vn3ffe+WnCt3/y7kZ/+vY7P11/+s5PcX/89k/SfOfHb7/zT1DofxDBf3rov+gNpjuv/8gbmVUanEqDU663/wEiNjliU+jtKZWoI12VwaE2ONUGp9q4QZXBsUnlFhWofVv1tnTxauDKEOtWpbqEEm1SDbZJscYi1lhE6oRClVmoMguUpnT5CiNfbsDlyXBRngzlSvUcCcKRIGwxwhYjLJGWJdQyBGq6QE3nq8e58nGObJQtGWaKhugC6gSfOsGn0HjkcW7CMQ5plE0aZfePsPqGmX3DzF4qvZdK76FOdA/SugbGOkmj7f0jrb3U5m5yQyeJ2NZX09Jd09RV1dBRUd9WVtdaVtNcVtN8qrrpZHXjiarG45UNxyrqS8uJpeXEkrK6krK6o2V1R8qIR8qIh8vqD5c3HK5oLK5oLKpoKq5sLqpsLqxoLqxoLqxsLqxqLqhuya9tKWhsK+jsKCT1FA33FdL6Cul9RYz+QmZfAa33ELnjUEfTQWLdwaqag+U1+WU1+SdqCo5XHzpWebCk4sDRsv1HyvYfKcs7XJZ7uCy3+FTu4bLcw2V5R8ryDpflFJ3MKji272DJngOH9+wv3p1XtCu3cGfOus9lF2zy2az8P5vZ+c9mFzyb/ecrEPrXJ0CN5pXzL6aHzh+qArEp9Hal3q5EHSrUoUKdKoNTbXRpjG6tya01e3Rmj87i1Vm8SFKdxbNZsztdrcl1HzXGdTcG8TaiCZV6B256yivS/g+QITYZYpPprLjJnMUkWkyisYjVKc1itVmkMolUJqHSKFQaBQojX2HgKwx8eSJDcdliHUusZQg1DIGazldMcGXjbOkYSzLKEo8wRbjDdMEQXUCl8yl0HmWCN0jjksc55HH2wBibNMoiDTP6hui9lInuQVoXeaydNNzaS2npJjd2kBra+oitPbUt3TVNnTVNnVWN7VUN7ZX1bRXE1vK61vK61rLallM1zadqmk9WN52objpR3XyitvV4bevxurZjde3H6ztLiZ2lxM7S+q7S+q7Shu6Shu6Sxu6S5p6S1t6Sjt6S/v6SoYHSicFSFrWUTSnlUkp4g0eY5CPDvUf62otbm4vrGw/XNhypbjxS1XCkouFIOfFwWV3RydqiEzWFx6txC45XF56oKTpZV3yKWHyyruB49aGSygNHTu0/fCK36Hhu4bGcgtKcgtLs/JLtzDp0FAr99ghuv/6jVEY8iHJcxCZDrHLEKtfbFKhdidpVRofa4NCYnFqzS2dxIxaPHvMabD6DzWe0+02OgMkRMDuDZmfQ5Nis0R5I12D330fU5lvXuq4e824VwTwJLQl1FvdmzS7cRCKbXBqTa1MQK1G7CnUoUbsSb+QiCeWIVY5YZTpMpsOkWotEY5FoLGKNRaKxiFQmUSJPDQIFypMiHImWLdYwhUqmAFfB4MvpPDmdJ6dxpTSudJwjGWOLR9miUZZohCkcYQpGmIIhOp9C41LGOYPjnIERZv/QRM/geBd5tKN/qL2P0toz2NpNbu4iNXWSmjpJjR399W299W29xNYeYmtPXUt3bXNXbXNXTVNnTXNXTXN3VXN3dUtvVUtfdRupqn2gqoNc1TlY1TlY2TlY2Ump7KJWdlMruqkVvdTyAWrF8EglY7SSN14lpFWKxivE4xWS8XLBaDmDWkYlnezpOtneeaqlo6y5s7yps7yhs4zYcaqu7VRt64malhO1Lcdrmk/UNJ+oaTlZ23qqrq2M2HGqtu1EdfOxysaSMuKRU7WHT9YUn6guOl5VeKzyPhaUVkCh3x6BOzgp01oeULnWItdaZFpMpsXkOqsCsSkRmwq1awxOjdGpNbsQzINavXhQmp1BzB2yesI2b8Tmjdp9UYc/5vBt0O7danQ7bZ5IulZPOCXmzqQrhGtxBrfT7AiaHUE8002Ojalt8xlsPoPVi4tiXjQ9hTEPkmggp9q/To3RqTE41KkTDqhNqbcpkpEqVZvEKoNIiasXyBGBXCeQ6/hSHU+q5Uo1XKmGI1WzJWq2SMkWKZlCJVOoZAjkdJ5sgiOhcSRjbNEInT9E51LH2QOjdNIwnUSl9VHHeiljPeTR7oGR7oGRLtJwJ2mokzTU0U9t76O291LaeymtPYOtPZTWXmpr/1Br/3ALabSVNNpKprUOTrQM0psp9BYKo4XKbKYymocYzUP05hFGM43ZzGI3CzjNMl6zkt+s4jdreM0abrOS3SigNzBGiUNU4sBgA2mwsY/S1ENp6qY0dg3WdwzUt5OI7f1JScR2Un3HQEPHQGMnubFjgNjeX9vSU93UVdXQUVnfXkFsK6tr+Rprm6HQb49AprVINOYHUaoxS5MPZFqLTIcpEKtSb1MZ7BqjQ2d26TGPweYzOfyYM2hzhx3eqNMfcwXinuCkNzTlDU35IzPp+jbqDU/fR09oansnt+oOJnQF4rhO/1ZjTn/M4Y86/FGHL2F6QKfnstWTlsKukMUVMjsCZkfA7PCbHX6Tw29y+A02n8GK6zVYvajVg5g9iNmNmJ1ao0NjtGsMdhVqVaFWpd6qQDAFYlEgFoXOLNOaZDqTTGeSaoxSjUGiNojVBpEKFSoQoQIRyHV8qYYn1XDFKrZIweBL6VzxOFs4zuSPMfmjDN4QjTNE4wzR2NRxFnWcRRljDo4ycMkj9IFhOml4gjTCII0ySKNM0iiLNMYhjXNJND5pQkBiiEgMYT9d2M8Q9TFE/UxRH0vUxxH18sR9Emm/UtqPyEkGBcmoIJkU/WZ5n0HaoxT2iDjdLEY3jd4zTu8ZZfQO03uHEmdguwfHugbHugfHugfHuwfHewbHewZpPRRaL3Wih0LrGhzrJI209Q219gy2dJObuwaaO0kZbYJCv5UCscr4gEqSD6Rqk1RjluswJWJVoTa1wa4zOfUWt9HmMzv8mCtk90Zc/pg7OOkLT/sjM8HYXHhyLjI1H51eSBmZ2mB4coMKjcEXnk495QplXKEsFJ/fZDA+l8HYbMpANLP+6AyuLzLti0z7wgm9IdypzeEbiKd0BWJOf8zpizp9UYc36kiEbNjmCdvcIZs7ZHWHMHcIcwUxZ8DiDFicAZPDZ7L7jDavweYxWD0GqwfF3HqLG7G4EIsTMTsRs1NrcmhNdq3JrjHa1AabymBVoZgKxZSIRaEzy7UmmcYgVRnESkQo1/Jlap5YyRUrOEI5SyBj8iRMnoTBE9O5YjpHNMERTnCENLZwnCUYZwnGmfwxJm+UyR9jCUfZwjGOeJQjGeVKR3nyUb5iVKBMKFSNCFUjItWIWDUiVo3IVKMa7ahBN4ohY3b9qB0ZdSKjTmTEph02qIZVMqpYSOULh7iCYY5whCUcZgiG6fwhOm9ogkud4FInuEM0zhCNOzTBHabzhun8YQZ/mM6nTnAp4+yBEQZpmN4/ROunjvdRMthLGYNCv50CoUL/IIoUeqEcESr0IiUqVhmkGpNca1YimAa16YwOvdlltHotjoDNHXJ4I+5A3BeaCkRnQvG5yNRCbGYxPrs8NX96euHM9MKZqfnTm53bIFcgBQAcP1k2NXfaH5rcl50DkuQdODQ6wYzPLcfnluOzSxmcSRhLGp1e3OJ6aodTTs7jhuJzKfEIDkRnNumPTPsj077wFK43NOkNTXqCcVx3IIZnqysQdfmjTl/U4Ys4fBGHL2zzhG2ekM0dtLmDmCuIuQK4Foff7PCZHT6Tw2dy+Ix2r9HmMdg8qNWNYi7E4kRMDp3JoTXa1HqLEjErtEaZGpWp9RIlIlZoRQqtSK4RytQCmVogU/MlKp5EmVCs4IoUXJGCI1JwJUqORMWRqDkyDUem5cgRjkLPUaAcJcpRoGwlylaibBXKVqMcjYGNGDhGE8dm5rgxjg/j+DBOAOMEMLbPzLIZWEYdQ6NmKJQsuZIlVbIlSrZIyRIpWUIFSyBn8mVMgYwpkLEEMqZAzhIqWCIFW6RkCRUMvozOk9A4onGWcJwlwFvKUOh/IAF+Wm2rEqVeokRwxckHEhUiVemlalSmMcg1BoXOqEJMWgOGYm6T3Wd1Bx3eiCcY94WngrFZPC4n55anF87MLa3OL68tnD77II6O0wEA3/nOdy1298myCgDA//297+3es/c73/luKj137d7b1NLO5gm9wejc0irubMrFle2cWTgzs3BmeuF0unh2T84tp5sM4kXc2Mx64EanFyJT85Gp+cjkfHgyFbKzofhsMDYbjM4EozOB6LQfN5WwoclEvIYmPcG4GzcQcwdirkDU6cfF4zVi94ZsnpDVE7K6g5grgDn9ZqfPbPcarS4Uc+rNdp3JqjVgGhTToGYVYsJVao0KrQFXrkFTytSoVKWXaVCZxiDTGqVak0RnliIWqR6Tolb8X4neKkGtUoNVYrBKTDaJxSZ1OKRepyzklkU8sqhHFvfI4h5p1CXx2sUOTGQyilCDGDFIdAap1oCfVZCo9GIlgitKKlbpJSoUV5RsKSeSXazEMz2Z7HIo9Fsu4Es1GV1YXrv75tt33/zxFt++99bb9956e/X5a6sXr65evDo9v6xCTJgz4PCG3YGYPzwVis1GpxZi04tTc8uziyvzy2uLp88unjm3vHo+3aWVDAalh8HTxFQ4fue73wUAxKbmS4+dAADk5OYVHT7yDw8/DNL47//wt+C/PddHo0em5hbOrIfv/PIaroFEAP22+eXVhMmQTRoRFIJ8QRjP05TT86dTTm0N05ml+MxifGYxNr2AG5maj0zjSToXmZwLx+fCk3OhuJdxCBxge4IxN/0Q2M9yB2IzgehMIJJorvoT5wemvOFJXE8w7g7G3MEY3lZ1+iIOX9juDdk9IZs7oBzZD3LGZTa3weo0YE7UYtebbYjJhhitOlwDpjVYtAaLBrVoUItab14XtahwDVaV0aYy2lRGu8pkVxntiQcmh8rsVFocSsyptDlVHrcq6FXH/OpJU08+2MM1qWcCqkmfMuRReBwKm1VhwZRmTGW0qg1WNYqp9BYVYlYgZoXOlKZRoTMpELMSMSsRs0JnlGsMUjUqUSESFSJR6sSKlNoMDlcBUDWY8aWNDpYTQPn41672l/abqsZgOcj0vuMnATg5/Bd6079o4X8G6V17we4++tevKWjfDXZ2CR6wWMCTqDP64uVrv/v97//9d1/j737/+xcuX5VrDDZ30OmLeENxf2Q6PDkbm/ZzC9KTDfRbz59Zu5Dy9JqTRAD9tgun19KdlhSDp+qoAIB/+Lv/BP7mb/Ftv/e97wMAHnroIc1o3nqJR7qqa4mPP/FIasH3vvf92PS8aYAASI6lM+dSmgYIgGRfPHN28czZhdNrKZOpGhUUggJRdH4Jz9OVuaWV2YC0ABTx/Cuzi2dmFk6nnJ5fnprDXZqaW5qcXZrEW6Mzi/GZhdj0QnR6Pjo1H52aj0zNRSbnIlOJ0AxPJh8k26R4szSQ1v33R6d9kSlfJBGgntAkyjgE9rN0gajLH3H6I05fWDN2AOTSlE6f2e4x29wmm8todaKYA8UcqMWOmu16s01vtulNNsRkQ0xWxJQMU6NVa7TqTDadyaYz2XUmu9bs0JqdOrNTZ3FpzU4NLubUWJ0aq0vjdOt8Xl3Ir5sM6qYtfflgL8+imwvrZkLaqF/jd2tcTo3NrrXyqwmgmm1H8DKNNo1R1ZuV/sln94gxDYppDFYNimerWYmYlDqjUmfc1CLO4FgNAdQMbVk+VEVIlp94daiKACoZX1PaHys7bZd294jvs+ZftBpyDcru3Qc2s6+Tjw5VgkzvyygDoGwsY1FbX5J07tlQ7jYbPkjhDyaftBvs6+RvLjONDB/9H3as9pDYm5en7WbiVUnnHrC7V/KAxQKuRJXRl6+88tP3fo4EL+vDL6HRFw2TL5hmLr3zzke/+uUvPv3kk08/+eSXv/yFb+WOb+XOC5evKjWo3RN0+yO+UDwYnY5MzsVn/NwCkC8ML5xeWzxzdnnVMUAAoFgVOXtxJWlEfgSQXStpS1biqqIt34gU//V73+eLpCotvYJQParV80VSlVbcsxc818IYn+j6R/D3AICGppblqKIIDJpXzy0nXVrBPYvnZsLTa4uJ9IwJi0CBOLqQbIriuYn2E/JFkdnFM7gbonNheXpheXpuCY/OqVQvfmYhlozO2PR8bHohMuVl5YMDHE9kag5vhOJjYmknT5Od+tgM3gjFO/XJ9NQ2Ew6OmWPuQBRvdWrHD4DcCZXLjzl9lkRuuk1Wl9HqNGJOI+Y0YE6DxYFa7Cn17AYCqKeb7XqTXW+26812xGxHLA69xYlYnIjFpcOcOsypszh1mFNndepsLp3dpXO5Eb9PHw7op0L6WSupAOzjY+hCVD8b0ceDSNCnc7t0Dqfe7hQP5YF6IYq59Ban3uJATJq+bLB3QK01WrUGq9Zg1eJ5bbTpjDatwaoxYGlNYJNSlwjQLZqUOpOSVkcAdSMb1xmpJoC9Axz8Ka1ud580sbCKuU1RD6CQvAdkdQkzvDRSTQCgdiTxVNa9L/Nq6yv/KdV4UGXde8HuPlnGHdkNsroTNWSWA1BOy1wIty9rY1U3lcksBwDsJXO3rcP9Cn9AR6o27cWfocwNO7i5/rLuvSC119y+rHLafQ9mJgFXrNwqR6R8+cq1d9//Ysi8OmxbGfMs04KLjNj8W2+9/6tf/M/00AxeuPXC5asKjcHhCbn8EW84HoxNR6bm4rMBXiHIF0Xml1cXz5xdXj2/ctZFJoAi+czquecTTqqLwRFp/PnUEiuFABpE28fm/diz83EAwOO5R/HmaqFs6vTahbSzAeeWN8doKkDjoiJQIImmN0IXllfnTQMEMGBYWplbWplbXEmlZypAp+eXp+eXp+aXkq3OxclkdMZnF5Lddj8rHxzk+KJTC9Gp+ejUAm5kagGPznDaWdFgfDaYaH5OB2L4+dApaTsBtGmTQ0xRHe0gyKNrPAGry291+jCn1+LwmO1us91ttrlNVhfuhgzlNBFAA8PiQBM6UcyJYi4Uc+kxF2p16TFnQqtLb3Xp7W69w613e9CAH40GDdNh45yNXACyBDbjYtw4HzNMhtCwH/V5UJcbdboN2rEskDeg9hitbhRzoRYdKRvsG9QgZjuSaPDaEZMdwcPaZEs0ew2YFsW0qEWLJs4kpKtNiGkZ9QRAHEextNWUvVlgD0mxaZOxGgKo4Wwt6kGVUPaC7B7xluUMIgEQxx64nD+1Gg+qsncf2ENSZtyRPSC7V4I/5VQCUMnYdpfT1sxYJqcSbPMuX1v4A8oggg2H989RZlI+KRvso/C/vs7bH8xMZghNjkjJESkvvfjyu+9/IYk9P+JZ7LZH2p3edq/jrbfe/9Uv/vmTTz755JOPf/nLX8SuvTJz5/ILl68qtQaHJ+QORHzheCg+E52am5wL8gpBvjiycHptefXcmbMXVs89b6MSwGF19IKHTABk56W1C7PyI6BYObt24dLahUtrU5picKSOwr5PMu7du2/v3mceAzvwp//lkac2rfCPAJDsF8PyI6BYFU6eCrCQCYDsOL12/vTa+bD8cGrlQml8eeXc0goemvK+ZIevQBxdOL26cNraSwC95tW55ZWES1hvqlPYa5lZOD3jl+SnissXOZK5aecVptfqINcbm/az88FBri86vaDqJoAuASu55QGON3ECVJMqPr+1Ix8c5Jmi0z5VNwF0SUJxTyjuCcaQiYMgj6HxBG3ugFXYkqoOkZ+ITsVw6gxGLlnlklPTTmgQhUbMZbQK61Kb1YsMVrdBNbbe+cwZFdvdqMODur1S+oH0vcgS2s3LcdOCfTC1z3njUrfX5DIM5oKsIdRk9xhtbqNVP5AD9lG0qMWhNzv0ZrverCVlA5A1LDY79GZ+NQGAOp7OZNWZuNWpmtTxdCabTj6U6nzuJat1JpuO1UAA9bTEWQWbzmTVGa20OgIA9TTj+pkHnRGj1RFALbUvuSd7B5Q6I6YzYjoZdb3M1EJmfeqdq5gbnoIsihBfx4gli+Xo0pasm75Vcp3U+hs2lFH3gew+KaYzcqoJoIqcrFItJ616RBpeQi3YsCNkZaZ3V/ZlbXiJVgtALUfHXB8PAFlUoZFThe9gcpO0l7YWsrnMRLFpK2/cnFMFQBWZujf9SBoxITk7uUJyHeb648RO1RL3guw+2aYVtj5NboUfSRl1b+qAyNbfN7Ekbd8z1STtIGRauJdMrdq4ecYydUYMcEXKdDkiBS4emo2GYAVir7FgRKex0YfgLc1PPvkYb2ku/dOFlZ+s4qFp9wTdgYg/HA/FpqNTc5OzAV4hKBBHlxLNzItr5y/FVUfBYXXsgmeQAMjOS2cvXDrrHCIcVscuXFo7fymmPAq+jqd2/EP60+9+97vf+/7305c0NreunL24ctY1QDgsiSVCEyMTANl5Zu1CWHYYgEHL6rnllXPLEUURAP3Y2aWVuKgYAFAsCp9dOrO2aCETAOi1rC2cXvVLikE/Nr+8Mr+8Mh+UFgCQLwzPLpyexfvpPkk+AF3o8vTc8tRckFsAQI9pcnbRwSsEoIDtWojPLMR0vQQADnJ9qdCMTM2rugkAgHbdfGRqHuMWANCjnJwLOQUHANjP9gRjM8EY0koA4CDXGJ32h520g6BFMekNxT0BPDTpGk/QJmolgBau04c5vBZBMwE0c+wexXAeyBmV29xmm1sxlAdyRmRWl5HbRACNTKvTaHUaVCNZAOyj6gxWl8HmNtg8BvVYFgA1PDdqdaE2hJQDQIMIdXikY/sB2D9gD5tnY2ZDJwGALJHDsuwcLARZXMwYCRr9RvJ+kDVmMLl8ZmELIWdcbvea7B6jDSXnpH0k2cNiiwO1CGoIoIbjEFNyQdaQ2GxHFMP7ANg3qNFbHAmVI/tATr9i42NOIwE00PEVzI5Ec9Ws6c/G/1rUycasbaKOAACoZtkQk000mANA/YTJhsiH9oGcfpkNMVoRGXUfyO6XWhFmPQHUTxitiDHtcepVY7qq/iywd0C1cWFqw9T63GpCYrWJOgKo5aY/2PDWRvz/idQ7Jh9vKgGAaqYVMVpF5ByQqurWipHXKzZRCxJvJ6PuBdn9smTFEkWlr5/2mFkPsqiibcpEjFYRORtkUUWZN+dWr9ffKiJnA5DdL0ttkqECqeUTtQAkKykiZ68fqESZSTbu0fo+MutThyj1cYC0zxR/vLEm1k1vkba5qj9rvT4Ttcl6blfm1rhMD80qg63Waq53G5oCuraYEm9pprrnb3/59ttfvr1+TjMZmpHJzKFppxIAxXP2wqU0PWQCIDsurZ1P2NtHSj9oDz+VpUEMZMrQ8ROnHnroPwMAHn74744QSshi2cN//5+3puohfmDl7MUzZy9gg4mgTIXm6dVJSXGidbm8cm555ax5gAAG7HhLs1ASTZ7lTJzinF9emQ9JC0CRILgyt3jGKyoCBRJP6szm/GmXoAjki51zS1OzS5Ozi5NIHwH0aWbwcPTGEqc1fcx8cJDjjU75mPngAMcbmZpXdhFAJxqemg9PzoWdggMgn26fNbMLwEGeOTYTiM34o9NGVj44wDVEpnzhKQPjENjP1gdj6d1zXhNh467nDWr0gzmbjkcj0+rEQ5OBOQ1Wp5SaC7JHJHhiWt0Gm0c6lAeyR8VWN2p1oVYXymsmgGaGEx3IA1kTJmMsZJ6Jmucdg4UgS+QwhzjZm96hSWJy+cxOKZEA6vhek92Lh+Y+qg7FnCjmXM9ETiMBAIAnoNkhpuSC7GGxBT8z4NJjLnF6oxj/WnNcek4TATTRMZcec+otuHgD1oHHLgA5/XI7YrZPEAmgjp9IVcXwPpDTL8fTc2OZzEQqpZHdL71faKb9Sa+7IRPxdMuiih4sNJN/rhsS+es2/NNCM61dtiGP1kMtc2gmis28efq260VlDs0Ntdr4NHPKb1BEzgZgY+Zu/FAmajfVb2t8b/4/DwCQzMSNO57Mx0xlqvqzAMiYmKnQrHOYGr36lpCmPa7onhW/9db7v0w7p/n73/3773/37y9cvqrQoHZ3IH0gaHI2wC0A+aLIwvLq8sq5M2sXVs+6NuXj2vlLa+eet1EIYNC9ljytOTxKA38Cx5r7z6xdOLN2/rSVQgCDltXzp1fPW8gEMOBYXpkUF4NCaWxp5Sx+QtM4QAAk22LaQNDC8ur8clRQBPJFkbmlldRspNmFMx5hESgQu+eXZ+aXp+eWp+eWnIJCkC904CcxZxZiSC8B9KqmfYmRn8m5yNRcZNKTHDRfHz1XdhJAhz4Unw3F5oJ2/gGQP2GdMbHy8aalLzLti0wZGfngABsNT3pCcbeZnQcOjpiiTl9YO34A5E2oXD5OEwE0SPATmslTmchgDsiiaPGzmclzmg4DpzFxThNLhKYYc6FWl8HqRq1uCTUVmm7U6kb566G5b8JkjIZMMxHTnG2wAGQJbaYgOxscHHCGDZGAwec1uD1Gl8fo9JocXlYjATSIjTZPsnuuQzEXanHqLU7E7EDMDkQxsg8AABomzA7E7BBRkjXB3LgSah7IHhMnn+pxOc0E0ETHH+MXUCWuoXLgThAJIGtYlDE0ZXbRYKZR+kYAACAASURBVC7IGhKZbGmzCLbpca/3oDcoJOekOs4b+q0bCxGSc/B+/QN1z9P6y6kzBl+34YN1zxP9Vrznm9bb3bBw446kNszQPb//5pl71pm755tK2PA0/X23ds/TusnJYtPqvHUv0j+7rd3zLV31Ws7mHWcS8U88U5nKPjw0tyYmWyjHQ7PJr2uNqjqnZL3zQtIy96233v/FPydD8xe/+Ld/+9d/+fWvX7h8Va7R29wBly/sDcYCkalwfDYxei4Izy+tLJ5eW44oigEAg+7Vc8+vnnOTCWDA8fzq2YurZy+uxlXFgIIlB9DZoy3bBeLDDz9cU0dsa698bOPyf3j44ZzcXQCA//qDJzyB0DLe+16ZFBeDfuzc0srZ5JSjtYC0GIBiYXht4fTaQlheCECveXV+KSIoBCA55uMVFQFQxPOfmV08MzO/PGMgEQrErvmlKa8oH4BD/MDk7OLkrLGz2xB3CQ8BvBU5F53ysg4B0ImG47MWdj4A3YrYTCg2E1R3EwDYz3IFoy76QbCf5Q5Ep2UdBNChS0x9t3L3g0PjlikvxtkPQLNi0hOKe0KaZgIA+1m6QMzljzr9EWELIWfcYveEVGMHQO64wuE185sJANRynUbMaVCOZBEFqMUhGcwFIIckt6Nmu57dsG9QrTfbEFYDAdRPmO2p5NpL0SIWJ4IJq4lCRDm6D4C9FB2CuRAM6c8BoF6I2N3i0TwAWhiRADoVMug7CADsE1gNi3ZSAQCH6OKQX+/10JtySVo36nAb7W6jeiwLNDGsbhRDSDlgH0WHZ5wOn9VkFlYTQBXbSSMSQNaI0OzUKfGaIAjm0VslNfUSvWp8HwD7qHoE8yCYuDp7VIS5EU4zATRNYG7E4kYsLp3FpTPr+rJz++QOndmhMzlodQRQJ0h7YNeZ7Dr58D6Q0yfDH4C9ZJXOaNUaOVX7KALUomUQCanRAAllLz5us91AEMqpIoC0wQplb1Z2jxgfIEoNKXCqCImxqdRAEJ+UndpqrIYAEoVzqgiprTaMaKU23DCUtG2tNo9djNUAkNyRTANByt59IDUqMlaTNv4joexJ1HNjmRLKHpAsM/PmnEqQvjB5lBhEkKwAn5QN0iuQ3K+xGgDSx6AYxGQ5mQZqEnuUVgKDCNI+wUqSctOSPamPIMNAUNpHmdjfjTueGpvarsyMickWyi+9dOVHP/4QPT1vWJk1rU1ZzsWtF6K3b/8oFZq/+Od//u1v/uWXv/wlHppWl9/hDXkCUX94MhSbiU37OFvmaa6sXVhZu7Cy5hwgAJItNWdzWlIM+m3nT6+dt5AJAHT+zXe/C+5P1qkxGr1/YPCZHd/DF/zt3wAAQOmx43gXGzcgKQb91oXlVQOJgD+YX14xkNa7Zj3GM7OLp2cXw/xCkN/bnxre6DIsT88tTc3iGjsJBWz3QnxmIeYSHEqsks90zkUmZ8OanvXiOnTB6HQgOhWIOicOJhce6Gw5APLodl/ISTsA8ugOb2hS0k4AbZrEZZdmdh44OGqKufDzlcnNGloOgDymxhe2e0I2/Axm7oTS6VeO7Ac5Y1KrC8UcEkpucv36ieSQCC3V99xHERgwrQHTGjiJSY01XI3RqpENJbtaOb0Kp9bi1HLSuvpEodbq1NpcWifStz+58FBbdT7Yy7fo5yPIrCI1erN3SKuzOREr3sXWkbJBNceJWHT9G/vwVSxhFQGAOqHW7NKak48tLq1yLDkGkten8umsPh03NbSV16tway1uLaeZAJrGLW6txaU1u7Qmp8bk1JgE69M0s4b4RrvGaB+rI4BavsZo1xjtWtnwXpDTK7VpjTbt+nBNdo/YrNabVIiJt17F9LlE+F4lJzOlz4xZH7FanxDD7UubvNknXV8zMaOFWZHcaHdV7e7EfCZmBSFVgqx7X4YNN0xa2nYi1OZZMiNVqZk0sm78A95L5m6YwcMsX6+tbFNRqZk36Wyc+rN1c2Y5AOVVqU5sap5TWjlVtesVEJJ3p0qoqk2bF4UXhT9df5dEmTTy7tQ7CtMe01Lvm/gE0z6OtCVbp0ylVSP9iK0fE1rtfcpU6oybQxNPTLZQfvGFl//3//7/fvubX/32X37123/51b/+9rf/+tt/+dff/Prf/9f/+7t//1//9m//+pvf/ObXv/7Vr3/9qxcuX5WqEIvDZ3cHXb6INxQPRqYi8dn49ML03PLswpn5pdWlM2eXV86dXj1/evV88pTiuiHpYVAkFyfOMJ7tHxhM7VROfv7jjz8B8Lnu4L/9/X//Xuql73znuwcP5RcV5/5fySUlx46vX/azvDoXlBaAIr7/DNpHAH2W2cXT6y6cnlnvaC+nzxmanF2cnMF73POx6fno1JyqmwC60MjkbGRyNhyfDcdnwvGZUHQ6GJ0KRqcCkalAZNIfjvvCcV8o7gvFvaGYJxDFdQei7kDU5Y+4/NF0nf6Iyx91+qMOX8Tpizi8YbsvbPeFbZ4QLreZAHInVO4A5vJbnH6zQ0okgDqeJ3UZZWLujgHToBaN3qxZv/LHlLqqMl0lYlLpzSo9pkIxFWpdvxzI5NhwUZDZrrLYVZhdbXeq3W51wKOJ+jVTAc10QDMT1M6GNNMBTcSn9rnUTrvaatNgNo3FrjPbdSa7cDAXZA0JTHaNya4x2tUmp9rkVJtcCc0utdmd1KU2uzUWjwbzaqw+rdWf1KfBfBrMq7F40tZMloAXaHSqjA6V0ZGo80bV69rUBpvaYFUnZ9SrEJNSZ1RojfKvnVH/V+Y2k8D/ko7VgI3T2reZnP9tFGyNS1xfKPbC5atbfenKKy9fu/HSy9dSS4KRuFihNdk8mDPZ2Azhw0HpubmysLS6lJxSnhxyWU1q7SMUCYKr+FlFOpOTSsbCY8fD8Zkdjz8BAHjooYeaW9rIlOGmlrYDB/MfeughsJG9hcdmF87MLpyZSWairpdwSCDuJoAuQ3IiOh6OMwuTMwuJc5GJEZv52PR8dHIukjAZjrGZoJ17AHTJIol89OH5GI57gzFvMOYJRN2BiDsQcfkjLl/Y6Qs7vWGHN2T3BHFtuO6E1uS/VnfQ6lq/bYfFJSMSWthOn9nhM2tp2QBkDaHJGyO5UcwloeSCOoHOZNMarWrUokLMKp1RueWiGpk6oVStT6hCpMmbBkg1BqnWKNWZZYhFpsdkekyOWuV6q1xvlekxGYrJDJjMaJUZrTKLTe60y70uRdijiHkVca9i0qec9iniXkXQJXfb5VZMbrYojBaFAb86E1OhnApCdpcYU+itCtSmQO0Kg0NhcCoMToXRtUW30uRRmb0qiy9Nr8rsVZo8CqMrsaHBqTA4FAaH3GCXoyltCfVJ0XUVqE2BWhV6q0K/fvM9udYo0xikKn3atZvf/HV+3xrHT4K97Zy/7LsMlqeuuRS07wabL3Dk9O18sOtlv3FBxsRkC+V0rmh4gj1MY+GOTLBGJtgjE+wROmeUwR1n8elsIZMrZgmkPJFCoTPpzQ6TzYM5vA5PED+5GYxMheMzsan5yZnF6bnlmfllfLLOVmcWltONTc+dOJW4mOpIybHpueVAKH7iZBn4Oo6fPDU5uxifXsCNTRs68f5RFxqdmotOzUUn5yKTs5H4bCSOtxlnQ7HpYBR3KhiZCkQmE81GvM0YjHmDUU8w6glE3f6Iyx9x+kJOX8jpDTnxWHQHbO7EPHOr04c5fRaH1+zwmu0eky2p1WO0uk1Wj9GauC9cShRzo1Y3irn1FpcecyFp3eS9ZE3qTnEa/MpuFFMhFoXOlPjjVyISpW7T/Y0SdzmSqvhSFV+Cq0yq4ss0fLmWL9fxFYhAqReoUKHKIFBvVGPgaw18nVGAmoSYRei0inx2UcgpCjtFEac46hKFnSKPVWgzC40GIYKKdKhIi0o0qESFilUGXJHaKNaYxVpMrLOKEZsYsYsRuwRxSPTpOiWoU4K6JAaP1OCRGNwSg1uCuiSoS6J3ihG7SGcVaXGxdTUWkcYiTCrKoBlXrDGJ1Uax2iBWJe5MKpBr+VI1T6LC7xLyjd/34a/PodLU3+rOzpFvvj5/pCBjYt5HjkjBFSv5UrVAphUpEKkKlWuNKsSsNVj1JrsRc1nsHpvLn4pOf3gyFJ0Ox2Yi8dlEcm0U7/Zu0heKf+c73wEAFB8+mmrx4Tc9em7nrud27sJf/cd//H+efW4n7p69WSKpIhCeDIQn/eG4P9keTPSagzFvMOoNRlMdZ5c/7PKHXb6wyxfGQ9DhCTo8QbsnYHMHbK7UJTc+zOGzJHLQbbK5jVaXEXMlr65x4D1lxGjDrxrUGDANiqn1FjViUektKn3iRhVKxKLEWz2IRamzKBCzArEodBaZ1izXmmVak0xrkmmNUo1RqjFK1Ph9iFGxChUp9SIFIlIgAoWOL9NwJSqOSMkWypl8KYMnYfDEExxRSho77TaamxXSOKJxjpjGldB4sgm+nCZQTAiVE6J1abgSJU2qmlCoJ3Rauglh2AwMl5HhMTK8JqbPzPAYGZiejmomVMoJmYIhVTDECqZIwRIqmEIlU4SrZkq0TCnClKEsmZElN7IUJpbCxFKYWQrz+mOlma3E2CqMrbKylRhbibGUFnwFpszAlKEMqZ4h0TMkyAOrY0i0DLGWKdYyxRqWSM0SqVgi/JdFZBNcCY0tGmcJxpiCb/z2YtD/uIIHCUqWQMYSyFJP8auG+BK1QKYVyXUSlV6uNii1Jo3eojNYUbPDiLksdq/V6XN4gk5vyOUNewJRbzCGn+9bNxjNKB5qx0+W4S1NdyDq9kfSdfnDLl/IlWzxpUyknjuANwDXTV5xiDm9mMOLObxmuycVgiar24i5jJjLgDnxHExc9meyISab1pC4A1uiR4yYVIhJoTXiytSoTKXHO334rXpECp1QrhXKtAKZhi/T8GUankTNk2p4Uu36vxItV6LhSjQcsYYjVnPEao5YxRGr2GIV/hMXTKGCKVQwBApG4neEZBNcyThHPM4WjzKFI3Te0ASHkrhDO5OcvD174g7tuEO0TfYPT5BG6KRR5sAoizTOGRjnDkzwBuh8Mp0/QOcPTPAHJvgDdP4Agz/AFAywBWSekCyVDKplFFRBMasomIpiVVNtGgqmoiDyQYWYLOSTObxBFpfC5FHpvCE6j0rnU+kCKl1IZYioTMkQWz7EUQ5xVUM81RBPPczT4A7xNMmn2mG+bliADAuQYYFumK8d5muHeJohrorKUVLYCgpbTmHJNsjc6OaFUgpTQmGKqUwxlSGiMoRDdOEQXUCd4FHGOeRR5sAwvX94op9Kg/c5hv7Rfn1o4omZHposgRy/1JInUfOlGqFUI1bopCq9XGNQ6RLRqTfZDZjTZHWZrG6L3Ys5fFan3+Ze1+rKpDMh5vDpDFh5ZQ2bL7Y4vOmaHR488sy2dY1WF64Bv9oacxiw9ZZgqjGIGG26VHvQgGn0Fo3eokbMasSsREwKfJRAY5BrDDINKlWjeC9YpNCJFDqRXCuUaQRSDV+q5kvVqTv74oeIyZcyeFIGV0rnSmgcEY0jorFF42wRjS0aZ4nGWKJxtmiMJRrFZYpGmYkHI0zRKFM0zBAOMQRDDMEQgz9E5+O/8Yv/zO8gjUMeY5NHWQOjLNIwo39ooocy3kUe7SQNd5KGOvqH2nopbT2DrSm7yem2dA8k7CG39g624D8TRBppJY22kcdbyeOtg7SEZFrrIK2NQmsborUN09rGGe1sVoeI26ngd2pFnYioUy/qMog7EVGnjNfOY7RN0NpGxzqGxzqHxrso492DtC4KrYsy0UWhd1EZXUPs7hFu96ige0zYPSbaorB7TNQ9LuqhiXtoEtzucXH3uKh7TNg1Kugc4XcOczuHOH+I7M4hdieV1UlldlIZnRRGF4XeNUjrGqR1ksc6SKNt/UOtPZSW7sHmLjL8OQ3oH+39QjMVl2nKU7KFCo5IyRUp+WKVQKoRyrRihU6q1MvUqEJrVOlMasSs0Vu0KIYYbYjJpjfb07u0W0227+z47XB0RpvOYN2k1oAl77ybUK3HG4DmxE1xkrfDUSRGSAxyjUGmRqUqXL1EiYiVOrFSJ5LrRHKdUKYVSBMnAXkSVWrWKlsgZwvkTL6UwZcyeFI6RzzBFtHYwnG2cIwlGGXwR+m8ETpvmM6l0tjUcTZ1jD04yiSPMgdGGaQRBmmIThqi9w/R+4fofVR6H5Xem/y3h0pP/qZ5Ugq9mzLRRaF1UWhdg+Od5PFO8njHwFj7wGg7abSdNNLWP9zaO9TSQ23upjR2kurb+4ltvTXN3TXNXdWNHVUN7ZX17ZXEtk1WEFtTlhNby4ltFfXtFY2dFU1dFU3dFc09FS29la19la3967b1V7aTKjtJVd2kqn5y9RC1hj5ay6fVSeh1UnqdnEFUMuuk9Br2aPUYtZpMqu7tr+npr+0iETtIxHYSsWOA2EEmdgwSOynE7iFizyixd5zYS0tzvK4Hd6yuZ4zYSyP2ThD76MQ+OrFvgthLw1+q7Rmt7R6p7Rqu6Rx6MKk1HUnbKTXtg7Xt5Nr2gdp2Um0bqa6tv7a1r7q5p7qpC/8pt3JiK/y9Nugf7bahuTUxmXwZk5+Wm3wZniwcoYIrUvLEKr5ELZRqRHIt3lGVKBGZCpWpUbkGleO3E09m2VbxdMMDLjH4q9KnK1ElbyOvWDfRF5ZrBTKNQKZJDoOo+VI1X6LiiZU8sZIjVHCECjb+MwwCGVMgY/KkTJ6UwZUwuBL8POA4SzjGFIwxBaNM/iiDP0LnDU9wqTQ2lcamjLESaTjCIA3TSUOJzl3P4Fg3ebRrYLSLNNLZP9zRP9TWS23tobbgbZlucnMXuamL3NxFbuxMs2uwsWuwsXOwoZPc0Emu7xgkdpLrO8nEDjKxY6CufaCufaC2jVTb1l/T2odb3dxb1dRd1dhV0dhVXt9RVtd6oqb5WFVjSUV9SVnd0bLaIydrDp+oTrf4RFXKouNJT1QXnawpOllbdKq2qKyuuKy+uLyhuKKxuKJp3cqmw9XNh2ubD9c1H2luO9rdVTLYW0ojH2MOHuNQSrmUY3xqKXuwZLS/hNR1tL31aFNzSUNzKbHleG3L8drW47Vtx2vbjte2H6vtOFbXdYzYc6yh71hD/7H6vtL6vlJibymxp5TYU1LXjVtK7Ckl9pbir9b3Jl/qKqntKqntLKntKKl5QNuPVrcfrW47Wt1WUtVaUtVSUtVcUtVcUtlcUtlUUtlUUtFwtIx45FRt8cmaouPVhcer4C8DQ/9oM4fmdom5npt8WcpUdKbSkydS8sUqvkQtkGoEMrVQphHKNUK5RijLoEC6Ll+ixuVJVOlyJUquWMEVb55SmqyblMmXMvgSBl9C50noXAmdI060DVkiGkuEZ+IoIxGIeCYmTguOswbHWOQRBnmEMTBMx1uIfRRaL2W8d3C8mzzaNTDSNTDSQRpu7x9qw38Lt3uwuYvc1DHQ1DHQ0NZf39ZHbO2tbempbempaequbu6qauqqbOiorO+oqO+oqG+vSDzorKjvLK/vLK/vrKjvKiN2ltV3ltV3narHfy684xSx42Rd+4m6tuO1rbjHalqPVbceq2opqWoqqWw8Wtl4pKy++GRt4fHqQyUVB46U7T98Mq/4RF7R8dzCY0lLU+YUbDC7oDS74FhO4fGcohM5xSdzDp/KPVKWe6Q890jFukcrcksrc49X5Z6syquq3d/UcLC79dBgx6GRrkPj3YcmevLpvYfGuw+S2w62Nx0g1h2oqj5YUZNfVlNwqrbwZG3BiTrc/BPE/JMNh041HjrVdPBU88GTTQdPNB440XDgeP2B48T9x4j7j9XtP1a3/xjxwHHigeP1uPuPJ5eX1uaV1uSV1OSVVOeVVOeV1NzX6ryS6ryj1XlHqxIeqcw7Upl3pGL/kYr9R8r3HynPO1KWW3wyt+hETuGxnILS7PyS7PySrENH/3rEd3ndgtLs/NL0JV9fwqZCHvR9jz74W/w59/fQ0ez8v1ThGULzPnGZkCfFTY/OrTHKFsjxM6GJmBPKt7q+ZnJbPAHTZfCTv7OYNDVMnBopHmPxx1j8VDtxhM4bonFxqTTO4BgLlzzCHBhmDAwzSMP0Piqtj0Lro9B6yfiPho92kUa6SCPtfdT2Piqejy3d5KaugaaugYb2vob2vrrW3rrW3kQ4NnZVNXRWNnSUE9vL6trKalpO1TSfrG45Ud18vKqptKKhtKKxtKKxtKKhpBy3saS8saSi6WhF09HypqPJB0fKm46WNx0pazxc3lBcVo9bVFZfdIpYdIpYeLKu8ERtwYma/GNVh45VHSypzDtcll14Iiu/dO/Bo3sPHNmz//CevOLduUW7cgtxd+Zs8LnsgnVzCp/LLdqZW7wz7/DO/Ud27j+688DRXQdKdh0o2XWwZNfBkl2HSncVHNtVdHz34RO7j5ftra7c21yb1duYRW7JorZmD7dlj7ZnU1uzehqymmr2VZbvO1mWdbwsu7Qs92h57pHy3CPlOYfLsw+XZxeXZxWXZxWX7yuu2FdUvreobG9h2Z6CU3vyT+7OP7n70Indh47vPnR896ETu/NP7Mk/uSf/5O78E7sPnVh/6eCxXUl3b3HXxse7Dh7bdbB01wHckl0HSnYdOLp7/9Hd+48kzDu8K694Z25R+gF5Niv/r8Tnsguey8a/D0U7c4t25Rbtyi3elZs4IJu+JBs3zN/w/cnO8L3a/h3Xt3ouO239v9iR3/imBdvt1J8uyBiXFy69dO36q9euv3p1k6/cfHCvvHID9+r1B97q2o1NXrl248q161eurvvy1esvX33l5auvXN7qlWsvXbn20pVrL758FXd9Wv5LV1946eqll65ceunK8y++/PyLL1984eWLL1y++MLlC5cuX7j00oVLL51//sVzz7947uKL5y6+cO7iC2fxu3yev7R67vnVcxdXzl3E7590Zu1C4tKm1XPL+D3hz5zF5+2nbmCcvPdH6j7w+OO1ueXVueW11IOkq3PLq7O4S6uzSyuzS2m/BLe4/ktwU/PL+K9rxPA5+VNz0anZ6FSGOVupyfkbnJwN469OzUam5hI3k093ej4ysxCZXYjMLUYWlqKnl2NnV2IX1+IvnI2/eC7+0rn45fPxF8/FL67Fz67ETi/Hlpbji8uTC8tT88tT8+k/o7Qcm12KzS7FZpaiyR+kiyR+AXT+wZzL5B+x4Wwk7fiEU249OP8xTNuFTW6/VST5oadN9cN/lGUuih+iTN+fbd10PO//ppu+k4lN/lLH/0H/EP40QcbE5AnFjz7+NPQP95kNPvHMD5945odPPPvDJ5997MnnHnty52NP7dzx1M4dT+3a8TTu7h3P7H78a8TX3Lnj6Z07ntr52JPP/vCJZx59/OlHdjz1yI6nHtnx5A8e+0Pc8eQPdjyV9OkfPI77zCO4TzzzyJPPPPLks488/eyjz+58dPfuH2bv/eH+fY8dyn7sUM5j+TmPFeY8lp/z2P6sx7L3PrZ792M7d+14bteOZxNV3ZGs6mNP7fzhk8/98MnnHn3i2UefSBa+42nctAo89YPEXjz1gwczudeJoh55PJOJV5/a6sbSntzsH3Qk/+DD/uQPdjz5yBbv99Yb1sywO9u46S2eemTHU48+/vTGb+OzP3zy2R8+8eyjT+Df1acfffzpRzMdtEd3PP3ojq1f8qfTvoGJd8TrvKW2TydX3vChJI5/5qO08TN6sCO89RCl7c6f+dMEW7vk166/+ujjT3/t5TcQCATy18jWMZ+rMDQhEAhkO7YO+8DQhEAgkG3ZOlAOQxMCgUC2Zeu8ok2heeXKlW+udhAIBPItY+tMzKuv3EyF5pUrV2BoQiAQyDpbJ67joXkljW+6jhAIBPKtYeulPrClCYFAINuy9eJIGJoQCASyLelxCUMTAoFAvoZNiQlDEwKBQO4HDE0IBAL5A9guNK9s4ZuuKQQCgXwLuH9LEwKBQCAb2JSYDK4EhiYEAoFsS3pc4sLQhEAgkG3ZlJgMruTKKzdgaEIgEEhmNiUmnSuGoQmBQCDbsikxYWhCIBDI/UiPSxiaEAgE8jVsSswJjujKtRtwcjsEAoFkhsGTpNzU0oQz2yEQCGQzTL4UNxWd6VcE4evA3IRAIJAE6XEJQxMCgUC+hk2JCUMTAoFA7sfW0LwCb9gBgUAg25E6p5k8symFLU0IBALZlvS4xIWhCYFAINuy6XfPYWhCIBDI/diUmAx4P00IBAK5Dyy+DBfehBgCgUC+HpZADluaEAgE8qCstzSTI0JXr8PQhEAgkG1gC+VsoRwfDsK9dv1VGJoQCASSGbZQwRLI04WhCYFAINuCtzRTsoSyazdgaEIgEMg2cESKlGyRnC2Sw9CEQCCQbeGKlFyRcj06hTA0IRAIZHu4YiUnpUjBESmu3XgNhiYEAoFkhidR8SQqnliJyxUpX4GhCYFAINvBl6r5EhVfouKJE75y4xYMTQgEAsmMQKoWSNV8ybrXb8LQhEAgkG0QyjSCjcLQhEAgkG0RyrUpYWhCIBDI1yCSa3GFMvxfGJoQCASyPWIFIlYgIoVOrNDhoXnjVRiaEAgEsg0SJYIrVuhEcp1Irrvx6m0YmhAIBJIZqUqfCM2EuhuvwdCEQCCQbZCpUZkalar0UpVeokIkKuTma3dgaEIgEEhm5BoDnpuJ9FSjN2/B0IRAIJBtUGiNCq1RrjXItQa5xiDXoK/eugtDEwKBQDKjRExKxKTQGRU6Ix6gMDQhEAhkW1R6swoxqxCzSmdS6UxKnfG124nQvJLGN11NCAQC+XagRjE1iqn1FhViUiEmpc702u17jz7+dHpWwtyEQCCQBFoU06KYBrVoUItab1Yh5lt37m3qnsPQhEAgkAQ6o01ntOkMVq0B06CYBsVu3X0dhiYEAoFkRm+2I0Ybgken0aY1Wm/ffSMVmvCcJgQCgWwANdtRs11vsutNdsRk15lst++9AVuaEAgEkhkD5jRYnKjFgVocerND2j2lKQAACIZJREFUb3bcgaEJgUAg22G0uo1Wl9HqMmBO1OJELY67996Eo+cQCASSGbPdY7K5TTa30eoyYi4D5rr7+ptwniYEAoFkxuLwpjTbPCar+94bb8ErgiAQCCQzmNOHa7F7LXavxe55/Y0fwdCEQCCQzNjcfpvbb3X6rU4/5vRZnf7X34ShCYFAINvg8ATt7oDdHbC5AjaXH3P6YGhCIBDItrh8Yac35PSGHN6g3ROwuQNvvPVPMDQhEAgkMy5fGNfhDTq8QYcn+MZbP4ahCYFAIJnxBKLuQMTtj7j8YbzV+eaPYGhCIBDINvjDk75Q3BuKewIxTyDmCUTf+qe3H338GfxVOFUTAoFANhCITvkjk77wpC+RnrEf/TgRmvCiIAgEAtlMOD4TjE7jBiKT/sjkj95+59HHn9mUkjA0IRAIBAAAYtML0am58ORcOD4Tjs8EY9M/fvunW0MTAoFAIAAAMDm3NDm7FJtZjE0vxKbmI5Nzb/8EhiYEAoFsw9zS6szCmZmFM9Pzy1NzS5Nzi+/89L1Hn4ChCYFAIJlYWjm/eObcwum1+eXVuaWV2cUzP33v/ceefBae04RAIJAMnDl36czZ55dXLyytnl88c3bh9Nl33/9wx1M7ARw9h0AgkK2ce/7y2sWXVs6/cObc86fPXlxavfDeBz974pnd+KtwniYEAoFs4OLlVy6+dO3CC1fPXXr57MXLqxdf/OBnnzy1c983XS8IBAL5VvLStddevPrqpSs3nr98HU/Pjz7+9Jk9Od90vSAQCORbydWbd6/cuHP5+u3Lr7z24tVXX7hy8+NPP9u5b/83XS8IBAL5VvLKrTeuvfb6tVfv4en58vVbn372xe6cQ990vSAQCORbyc07b924/eaN229ev/XGK6+9fu3Vuz///Ks9uQXfdL0gEAjkW8mG0Lz1+rVX730GQxMCgUC24+adN2/eefPm7Tdv3H7j+q3XX3nt3mdffAW75xAIBJKZm7ffwL1x6/Ubt16//tq9z774amfWgW+6XhAIBPKt5Obt12/cuod7/bW7r7x257MvvoRTjiAQCCQzN2/fu3nr3s1kaF5/7c5nX3wFJ7dDIBBIZm7eunvj1t0br929/tqd66/euf7q7c8+//Lx5GWUEAgEAtnAzdfu3Hjtzo1X71x/9fb1V2+/cvPWZ59/id+wAwKBQCCbuXnr7s1bd5LRefv6q7c//+LLHz757DddLwgEAvlW8uqtu68mcxOPzs+/+PLRJ575pusFgUAg30pu3bn32p17r92+99rtu3iAfv7lV6mf8IVAIBDIBm7ffePWnddv3bl3KxGd97748qtHH3/6m64XBAKBfCu5c+/NO/fewL199/Xbd1//8qv/AUMTAoFAMnP39Tfvvv7mnXtv3L77xp17b9y+9wYMTQgEAtmWe2+8dff1t5LR+eade298BUMTAoFAtuPeGz+698Zb6dH51Vf/E4YmBAKBZObqKzevXr959ZWbV165+fLV65evXv/055/D0IRAIJDMMAUyJl/G5EnpXPEERzzBEV+5dgOGJgQCgWSm+ERN8YmawmNV+aWV+aUV+SXlMwunYWhCIBBIZvJLKv7/9u5lqYkgDMMwN+LC0niEQAiGRMNB4+EyRcGz3oOX5iJWGJtMk69caNHPsxqqhqqs3ur+M52ZHL95cvRmPH81fvZyNFt8+PJjGc2+l557GTrQrstizl/tP12MZouLz99v3R50m7jJNUATJsd/FHNv+kI0AXodHL3uFnN4eLqMZveeq6Fc/imaQHNWo8y96Yvd6fPh4en5p2/daJppAlwqirkzOTn/eBnNvmJu/bnkBGjFaLYYzRarYm4fHK+iubaJZppA01ajzJ3JyfaTZTS/+iIIYL2imI/HR+870Vw7vjTTBNo1PDxdbcy3D44fjefLaP7rzwXwX+oW8/H4SDQBarob80fj+cN90QToVxTz4f783Ycvogmw3mpjvizmg9Ez0QToVRTz/t7TswvRBOjR3ZiLJsA1imLe2511o1k/eO5RTaA5RTG70ewro0NBQLuKYt7bnZ1dfK4co9wSTaBlZTSHU9EE6FUsMzePppkm0KKimEU018bRShNoV1HMge05QEU3mgPRBKgrlpmD4fTsvBbNyrYd4OYrinl353AZzX/9uQD+S0UxRROgpiimaALUDEQTYHNFMUUToKYopmgC1BTFFE2AGtEECIgmQEA0AQJXo/n2/JNoAqxXFPPO9kQ0AXoVxRRNgJqimKIJUCOaAIFuLkUT4BqiCRAoiimaADWiCRAQTYCAaAIERBMgIJoAgb5o1t9v7qXnQKPq0Vz7L3IJtCuNpmICTRNNgMCGM83V/ZVBJ8DNt8m3590+9l0DNEE0AQKbzDRFE+C3ykrz2oc0FRNojhNBAAHRBAiIJkBANAECogkQEE2AgGgCBNLf03T2HGjatQ+3L29be62bQHP+Jppbugm0RjQBAhuePf955Sc1r14D3HxWmgAB0QQI+PYcIOA5TYCAE0EAAdEECIgmQEA0AQKiCRAQTYCAaAIERBMgIJoAAdEECIgmQEA0AQKiCRAQTYCAaAIERBMgIJoAAdEECIgmQEA0AQKiCRAQTYCAaAIERBMgIJoAAdEECIgmQEA0AQKiCRAQTYCAaAIERBMgIJoAAdEECIgmQEA0AQKiCRAQTYCAaAIERBMgIJoAAdEECIgmQEA0AQKiCRAQTYCAaAIERBMgIJoAAdEECIgmQEA0AQKiCRAQTYCAaAIERBMgIJoAAdEECIgmQEA0AQKiCRAQTYCAaAIERBMgIJoAAdEECIgmQEA0AQKiCRAQTYCAaAIERBMgIJoAAdEECIgmQEA0AQKiCRAQTYCAaAIERBMgIJoAAdEECIgmQEA0AQKiCRAQTYCAaAIERBMgIJoAAdEE2Nwv9qwU/0l6nUIAAAAASUVORK5CYII=" alt="" width="395" height="262" />

  中间出现错误:

    错误提示为:error C2440: “=”: 无法从“std::string”转换为“int”

    出错原因:没有搞清楚各个参数的类型,n为从主函数传递到类整数的int型,m为从类中返回的结果是字母为string型。

2016.5.19——Excel Sheet Column Title的更多相关文章

  1. 【leetcode】Excel Sheet Column Title & Excel Sheet Column Number

    题目描述: Excel Sheet Column Title Given a positive integer, return its corresponding column title as ap ...

  2. 【leetcode】Excel Sheet Column Title

    Excel Sheet Column Title Given a non-zero positive integer, return its corresponding column title as ...

  3. Excel Sheet Column Title & Excel Sheet Column Number

    Excel Sheet Column Title Given a positive integer, return its corresponding column title as appear i ...

  4. 168. Excel Sheet Column Title

    Excel Sheet Column Title Given a positive integer, return its corresponding column title as appear i ...

  5. 2016.5.18——Excel Sheet Column Number

    Excel Sheet Column Number 本题收获: 1.对于字符串中字母转为ASIIC码:string s ;res = s[i]-'A'; 这个res就是数字s[i]-'A'是对ASII ...

  6. Leetcode Excel Sheet Column Number (C++) && Excel Sheet Column Title ( Python)

    Given a column title as appear in an Excel sheet, return its corresponding column number. For exampl ...

  7. Excel Sheet Column Title&&Excel Sheet Column Number

    Excel Sheet Column Title Given a positive integer, return its corresponding column title as appear i ...

  8. LeetCode 168. Excel表列名称(Excel Sheet Column Title)

    168. Excel表列名称 168. Excel Sheet Column Title 题目描述 给定一个正整数,返回它在 Excel 表中相对应的列名称. LeetCode168. Excel S ...

  9. LeetCode_168. Excel Sheet Column Title

    168. Excel Sheet Column Title Easy Given a positive integer, return its corresponding column title a ...

随机推荐

  1. Java多线程(六) —— 线程并发库之并发容器

    参考文献: http://www.blogjava.net/xylz/archive/2010/07/19/326527.html 一.ConcurrentMap API 从这一节开始正式进入并发容器 ...

  2. HDU2665_Kth number

    给一个数组,求区间[l,r]中第k大的数. 今天被各种数据结构虐爆了,自己还是需要学习一下函数式线段树的,这个东西好像还挺常用. 函数式线段树的思想是这样的,对于每个时间状态,我们都建立一颗线段树,查 ...

  3. ava8并发教程:Threads和Executors

    原文地址  原文作者:Benjamin Winterberg 译者:张坤 欢迎阅读我的Java8并发教程的第一部分.这份指南将会以简单易懂的代码示例来教给你如何在Java8中进行并发编程.这是一系列教 ...

  4. python selenium2 有关cookie操作实例及如何绕开验证码

    1.先看一下cookie是啥 cookie是访问web时服务器记录在用户本地的一系列用户信息(比如用户登录信息),以便对用户进行识别 from selenium import webdriver im ...

  5. 面向对象高级编程(2)-使用@property

    使用@property 在绑定属性时,如果我们直接把属性暴露出去,虽然写起来很简单,但是,没办法检查参数,导致可以把成绩随便改: s = Student() s.score = 9999 这显然不合逻 ...

  6. python之旅:并发编程之多进程理论部分

    一 什么是进程 进程:正在进行的一个过程或者说一个任务.而负责执行任务则是cpu. 举例(单核+多道,实现多个进程的并发执行): egon在一个时间段内有很多任务要做:python备课的任务,写书的任 ...

  7. 目标检测应用化之web页面(YOLO、SSD等)

    在caffe源码目录下的examples下面有个web_demo演示代码,其使用python搭建了Flask web服务器进行ImageNet图像分类的演示. 首先安装python的依赖库:pip i ...

  8. EMF的安装及用例

    转: EMF的安装及用例 本人正在开发专门针对计算机视觉领域的DSL(这是一个和某公司合作的项目),欢迎各位朋友一起交流学习! 一.简介 EMF是一个建模框架和代码生成工具,用于构建基于结构化数据模型 ...

  9. web项目中配置文件的加载顺序

    当一个项目启动时,首先是web.xml: 这里面的配置: 为什么要在web.xml中配置struts的过滤器? 因为一个web项目运行的时需要加载的,或者默认的部分配置都会在web.xml中配置,中间 ...

  10. 六、java异常处理

    目录 一.异常的概念 二.异常的分类 三.异常的捕获和处理 四.使用自定义异常 一.异常的概念 java异常是指java提供的用于处理程序运行过程中错误的一种机制 所谓错误是指在程序运行的过程中发生的 ...