(转载请注明出处:http://blog.csdn.net/buptgshengod)

1.背景

     接着上一节说,没看到请先看一下上一节关于数据集的划分数据集划分。如今我们得到了每一个特征值得信息熵增益,我们依照信息熵增益的从大到校的顺序,安排排列为二叉树的节点。数据集和二叉树的图见下。
(二叉树的图是用python的matplotlib库画出来的)

数据集:
  

决策树:




2.代码实现部分

     由于上一节,我们通过chooseBestFeatureToSplit函数已经能够确定当前数据集中的信息熵最大的那个特征值。我们将最大的那个作为决策树的父节点,这样递归下去就能够了。

主要函数:详见凝视
def createTree(dataSet,labels):
#把全部目标指数放在这个list里
classList = [example[-1] for example in dataSet]
#以下两个if是递归停止条件,各自是list中都是同样的指标或者指标就剩一个。
if classList.count(classList[0]) == len(classList):
return classList[0]
if len(dataSet[0]) == 1:
return majorityCnt(classList)
#获得信息熵增益最大的特征值
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
#将决策树存在字典中
myTree = {bestFeatLabel:{}}
#labels删除当前使用完的特征值的label
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
#递归输出决策树
for value in uniqueVals:
subLabels = labels[:] #copy all of labels, so trees don't mess up existing labels myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
return myTree

打印出来的决策树:{'throat': {0: {'mustache': {0: 'women', 1: 'man'}}, 1: 'man'}}



以下就是怎样是用建立好的决策树。我们建立函数
inputTree:是输入的决策树对象
featLabels:是我们要预測的特征值得label,如:['throat','mustache']
testVec:是要预測的特征值向量,如[0,0]
def classify(inputTree,featLabels,testVec):
#存储决策树第一个节点
firstStr = inputTree.keys()[0]
#将第一个节点的值存到secondDict字典中
secondDict = inputTree[firstStr]
#建立索引,知道相应到第几种特征值
featIndex = featLabels.index(firstStr)
key = testVec[featIndex]
valueOfFeat = secondDict[key]
#对照,推断当前的键值是否是一个dict类型,假设是就递归,不是就输出当前键值为结果
if isinstance(valueOfFeat, dict):
classLabel = classify(valueOfFeat, featLabels, testVec)
else: classLabel = valueOfFeat
return classLabel

測验:当我们输入classify(mtree,['throat','mustache'],[0,0])时,显示结果是women,表明没有喉结和胡子是女人。



3.源代码下载


【机器学习算法-python实现】决策树-Decision tree(2) 决策树的实现的更多相关文章

  1. 数据挖掘 决策树 Decision tree

    数据挖掘-决策树 Decision tree 目录 数据挖掘-决策树 Decision tree 1. 决策树概述 1.1 决策树介绍 1.1.1 决策树定义 1.1.2 本质 1.1.3 决策树的组 ...

  2. 机器学习算法实践:决策树 (Decision Tree)(转载)

    前言 最近打算系统学习下机器学习的基础算法,避免眼高手低,决定把常用的机器学习基础算法都实现一遍以便加深印象.本文为这系列博客的第一篇,关于决策树(Decision Tree)的算法实现,文中我将对决 ...

  3. 决策树Decision Tree 及实现

    Decision Tree 及实现 标签: 决策树熵信息增益分类有监督 2014-03-17 12:12 15010人阅读 评论(41) 收藏 举报  分类: Data Mining(25)  Pyt ...

  4. 1. 决策树(Decision Tree)-决策树原理

    1. 决策树(Decision Tree)-决策树原理 2. 决策树(Decision Tree)-ID3.C4.5.CART比较 1. 前言 决策树是一种基本的分类和回归方法.决策树呈树形结构,在分 ...

  5. 【机器学习算法-python实现】决策树-Decision tree(1) 信息熵划分数据集

    (转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景 决策书算法是一种逼近离散数值的分类算法,思路比較简单,并且准确率较高.国际权威的学术组织,数据挖掘国际 ...

  6. 【机器学习算法-python实现】Adaboost的实现(1)-单层决策树(decision stump)

    (转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景      上一节学习支持向量机,感觉公式都太难理解了,弄得我有点头大.只是这一章的Adaboost线比 ...

  7. (ZT)算法杂货铺——分类算法之决策树(Decision tree)

    https://www.cnblogs.com/leoo2sk/archive/2010/09/19/decision-tree.html 3.1.摘要 在前面两篇文章中,分别介绍和讨论了朴素贝叶斯分 ...

  8. 机器学习-决策树 Decision Tree

    咱们正式进入了机器学习的模型的部分,虽然现在最火的的机器学习方面的库是Tensorflow, 但是这里还是先简单介绍一下另一个数据处理方面很火的库叫做sklearn.其实咱们在前面已经介绍了一点点sk ...

  9. 决策树decision tree原理介绍_python sklearn建模_乳腺癌细胞分类器(推荐AAA)

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  10. 【3】Decision tree(决策树)

    前言 Decision tree is one of the most popular classification tools 它用一个训练数据集学到一个映射,该映射以未知类别的新实例作为输入,输出 ...

随机推荐

  1. python基础-类的属性(类属性,实例属性,私有属性)

      一:类的属性 类的属性分为:类属性(公有属性),实例属性和私有属性. 1)类属性(公有属性(静态字段): 类定义时直接指定的属性(不是在__init__方法中),可以通过类名直接访问属性,并且保存 ...

  2. Python字符串(Str)详解

    字符串是 Python 中最常用的数据类型.我们可以使用引号('或")来创建字符串. 创建字符串很简单,只要为变量分配一个值即可 字符串的格式 b = "hello itcast. ...

  3. vue-cli脚手架安装

    -1.安装淘宝镜像 $ alias cnpm="npm --registry=https://registry.npm.taobao.org \ --cache=$HOME/.npm/.ca ...

  4. IntelliJ IDEA 去除IDE自动的参数名 提示功能

  5. 二进制方式部署Kubernetes 1.6.0集群(开启TLS)

    本节内容: Kubernetes简介 环境信息 创建TLS加密通信的证书和密钥 下载和配置 kubectl(kubecontrol) 命令行工具 创建 kubeconfig 文件 创建高可用 etcd ...

  6. codis+redis 集群搭建管理

    Codis 是一个分布式 Redis 解决方案, 对于上层的应用来说, 连接到 Codis Proxy 和连接原生的 Redis Server 没有明显的区别 (不支持的命令列表), 上层应用可以像使 ...

  7. Python全栈开发之13、CSS

    一.css简介 CSS 是 Cascading Style Sheets的缩写,用来设计网页的样式布局,以及大小来适应不同的屏幕等,使网页的样式和网页数据分离, 二.导入css 导入css有4种方式: ...

  8. HDU - 4809 树形dp

    找了半天bug 发现把q打成了p... 思路:用dp[ i ][ j ][ k ] 表示在 i 这个点 这个点的状态为 j (0:不选 1:属于奇联通块 2:属于偶联通块) 且 奇联通块 - 偶联通块 ...

  9. Bootstrap--响应式导航条布局

    <!DOCTYPE html> <html> <head> <meta name="viewport" content="wid ...

  10. FPGA+ARM or FPGA+DSP?

    网上有人说.现在的FPGA,ARM功能已经强大到无需DSP协助处理了,未来DSP会不会消声灭迹?是DSP取代FPGA和ARM,还是ARM,FPGA取代DSP呢?担心好不容易学精了DSP,结果DSP变成 ...