assignment1SVM的一些经验
def svm_loss_vectorized(W, X, y, reg):
"""
Structured SVM loss function, vectorized implementation. Inputs and outputs are the same as svm_loss_naive.
"""
loss = 0.0e0
dW = np.zeros(W.shape,dtype='float64') # initialize the gradient as zero #############################################################################
# TODO: #
# Implement a vectorized version of the structured SVM loss, storing the #
# result in loss. #
#############################################################################
pass
#############################################################################
# END OF YOUR CODE #
#############################################################################
num_train = X.shape[0]
score = np.dot(X, W)
loss_matrix = np.maximum(0, score - score[np.arange(num_train), np.array(y)].reshape(-1, 1) + 1)
loss_matrix[np.arange(num_train), np.array(y)] = 0
loss = np.sum(loss_matrix)
loss /= num_train
loss += 0.5 * reg * np.sum(W * W) #############################################################################
# TODO: #
# Implement a vectorized version of the gradient for the structured SVM #
# loss, storing the result in dW. #
# #
# Hint: Instead of computing the gradient from scratch, it may be easier #
# to reuse some of the intermediate values that you used to compute the #
# loss. #
#############################################################################
num_classes = W.shape[1]
coeff_mat = np.zeros((num_train, num_classes))
coeff_mat[loss_matrix > 0] = 1
coeff_mat[range(num_train), list(y)] = 0
coeff_mat[range(num_train), list(y)] = -np.sum(coeff_mat, axis=1) dW = (X.T).dot(coeff_mat)
dW /= num_train
dW += reg * W
#############################################################################
# END OF YOUR CODE #
############################################################################# return loss, dW
这里面,有一句很难理解:
loss_matrix = np.maximum(0, score - score[np.arange(num_train), np.array(y)].reshape(-1, 1) + 1)
当时看了很久,后来想通了,我们拆开来看,就不会很难了。
score[np.arange(num_train), np.array(y)]是从分数中,把正确的分数提取出来。下图中,那个小红框,就表示当前正确的分类对应的分数。提取出来之后,就是N*1维的矩阵
score - score[np.arange(num_train), np.array(y)].reshape(-1, 1)这个减法虽然维度不匹配,但是有boardcasting技术,后面的矩阵会自动列复制到维度N*C

num_classes = W.shape[1]
coeff_mat = np.zeros((num_train, num_classes))
coeff_mat[loss_matrix > 0] = 1
coeff_mat[range(num_train), list(y)] = 0
coeff_mat[range(num_train), list(y)] = -np.sum(coeff_mat, axis=1) dW = (X.T).dot(coeff_mat)
dW /= num_train
dW += reg * W
dW = (X.T).dot(coeff_mat) 这里dW 的计算,使用向量计算。用一个取值的coeff_mat矩阵来确定取哪些x加入。看懂循环是如何操作的,就明白了这个这里取巧的从X.T来实现循环,时间倍数16倍。

中间有几次,发现loss老是益处报错,后来才发现应该是learning rate 太大了,把-5改成-6,就可以了。原因是这里没有学习速率衰减优化策略
assignment1SVM的一些经验的更多相关文章
- 移动硬盘不能识别的常见7种解决方案 ~ By 逆天经验
服务器汇总:http://www.cnblogs.com/dunitian/p/4822808.html#iis 服务器异常: http://www.cnblogs.com/dunitian/p/45 ...
- 【原创经验分享】WCF之消息队列
最近都在鼓捣这个WCF,因为看到说WCF比WebService功能要强大许多,另外也看了一些公司的招聘信息,貌似一些中.高级的程序员招聘,都有提及到WCF这一块,所以,自己也关心关心一下,虽然目前工作 ...
- iOS架构一个中型普通App的一些经验总结
这一版比较完善的的App终于提交审核了.有时间写写自己的一些经验的总结了.自己主导的从0到比较成型的app到目前来说也只有两个,但是其中的很多东西都是大同小异.基本上是想到了什么就写什么,感觉写的不到 ...
- 从史上八大MySQL事故中学到的经验
本文列举了史上八大MySQL宕机事件原因.影响以及人们从中学到的经验,文中用地震级数来类比宕机事件的严重性和后果,排在最严重层级前两位的是由于亚马逊AWS宕机故障(相当于地震十级和九级). 一.Per ...
- CentOS上 Mono 3.2.8运行ASP.NET MVC4经验
周一到周三,折腾了两天半的时间,经历几次周折,在小蝶惊鸿的鼎力帮助下,终于在Mono 3.2.8上运行成功MVC4.在此总结经验如下: 系统平台的版本: CentOS 6.5 Mono 3.2.8 J ...
- 【腾讯Bugly经验分享】程序员的成长离不开哪些软技能?
本文来自于腾讯bugly开发者社区,非经作者同意,请勿转载,原文地址:http://dev.qq.com/topic/57ce8068d4d44a246f72baf2 Dev Club 是一个交流移动 ...
- CI Weekly #6 | 再谈 Docker / CI / CD 实践经验
CI Weekly 围绕『 软件工程效率提升』 进行一系列技术内容分享,包括国内外持续集成.持续交付,持续部署.自动化测试. DevOps 等实践教程.工具与资源,以及一些工程师文化相关的程序员 Ti ...
- C#异常处理经验(原则与方法)
本文是异常处理经验性的文章,其实跟C#关系也不大.比较适合刚刚熟悉异常语法,而缺乏实战的读者.当然,经验老练的读者也可指出不足.给予意见.补充说明,一起完善文章,分享更多知识与经验. 1 ...
- 【原创经验分享】JQuery(Ajax)调用WCF服务
最近在学习这个WCF,由于刚开始学 不久,发现网上的一些WCF教程都比较简单,感觉功能跟WebService没什么特别大的区别,但是看网上的介绍,就说WCF比WebService牛逼多少多少,反正我刚 ...
随机推荐
- 重构一段基于原生JavaScript的表格绘制代码
为了在CardSimulate项目中方便的显示技能和效果列表,决定重构以前编写的一段JavaScript代码——att表格绘制库,这段代码的作用是将特定的JavaScript数据对象转化为表格,支持精 ...
- UOJ#328. 【UTR #3】量子破碎
传送门 学过 \(FWT\) 看到操作 \(2\) 不难可以联想到 \(FWT\) 考虑一遍 \(\oplus\) \(FWT\) 会把 \(a_t\) 变成什么 \(a_t'=((-1)^{bitc ...
- react组件更新swiper
如果swiper渲染出来的数据不是写死的,那么就会涉及到swiper的更新, 那么我们在new 出 swiper 实例的时候,就需要把这个实例添加到组件里面去,在更新的或卸载的时候就可以直接使用 sw ...
- 原生爬虫小Demo
import re from urllib import request class Spider(): url = 'https://www.panda.tv/cate/lol' #[\s\S]匹配 ...
- <Android 基础(二十六)> 渐变色圆角Button
简介 总结下之前看的自定义View的内容,结合一个简单的例子,阐述下基本用法和大致的使用流程,这个例子比较简单,更复杂的自定义View,随着自己的学习,后面再慢慢添加.作为一个Android开发者,这 ...
- CentOS7系列--1.2CentOS7基本设置
CentOS7基本设置 1. 查看相关信息 1.1. 查看系统信息 1.1.1. 查看系统位数 方法1: [root@centos7 ~]# uname -a Linux centos7.smartm ...
- C# Base64Helper
public static class Base64Helper { /// <summary> /// base64字符保存图片到本 /// </summary> /// & ...
- Android横、竖屏幕动态切换(layout-land 和layout-port)
下面是一个例子程序: 1.首先通过以下语句设置Activity为无标题和全屏模式: // 设置为无标题栏 requestWindowFeature(Window.FEATURE_NO_TITLE); ...
- Java中的Number和Math类简单介绍
Java Number类 一般地,当需要使用数字的时候,我们通常使用内置数据类型,如:byte.int.long.double 等. 实例: int a = 5000; float b = 13.65 ...
- 聊聊 getClientRects 和 getBoundingClientRect 方法
开始表演 今天来聊一下两个相似的方法,它们就是:getBoundingClientRect().getClientRects(). 只见它们俩手拉手地登上了舞台,一个鞠躬,便开始滔滔不绝起来. 自述 ...