def svm_loss_vectorized(W, X, y, reg):
"""
Structured SVM loss function, vectorized implementation. Inputs and outputs are the same as svm_loss_naive.
"""
loss = 0.0e0
dW = np.zeros(W.shape,dtype='float64') # initialize the gradient as zero #############################################################################
# TODO: #
# Implement a vectorized version of the structured SVM loss, storing the #
# result in loss. #
#############################################################################
pass
#############################################################################
# END OF YOUR CODE #
#############################################################################
num_train = X.shape[0]
score = np.dot(X, W)
loss_matrix = np.maximum(0, score - score[np.arange(num_train), np.array(y)].reshape(-1, 1) + 1)
loss_matrix[np.arange(num_train), np.array(y)] = 0
loss = np.sum(loss_matrix)
loss /= num_train
loss += 0.5 * reg * np.sum(W * W) #############################################################################
# TODO: #
# Implement a vectorized version of the gradient for the structured SVM #
# loss, storing the result in dW. #
# #
# Hint: Instead of computing the gradient from scratch, it may be easier #
# to reuse some of the intermediate values that you used to compute the #
# loss. #
#############################################################################
num_classes = W.shape[1]
coeff_mat = np.zeros((num_train, num_classes))
coeff_mat[loss_matrix > 0] = 1
coeff_mat[range(num_train), list(y)] = 0
coeff_mat[range(num_train), list(y)] = -np.sum(coeff_mat, axis=1) dW = (X.T).dot(coeff_mat)
dW /= num_train
dW += reg * W
#############################################################################
# END OF YOUR CODE #
############################################################################# return loss, dW

这里面,有一句很难理解:

  loss_matrix = np.maximum(0, score - score[np.arange(num_train), np.array(y)].reshape(-1, 1) + 1)
当时看了很久,后来想通了,我们拆开来看,就不会很难了。
score[np.arange(num_train), np.array(y)]是从分数中,把正确的分数提取出来。下图中,那个小红框,就表示当前正确的分类对应的分数。提取出来之后,就是N*1维的矩阵
score - score[np.arange(num_train), np.array(y)].reshape(-1, 1)这个减法虽然维度不匹配,但是有boardcasting技术,后面的矩阵会自动列复制到维度N*C

  num_classes = W.shape[1]
coeff_mat = np.zeros((num_train, num_classes))
coeff_mat[loss_matrix > 0] = 1
coeff_mat[range(num_train), list(y)] = 0
coeff_mat[range(num_train), list(y)] = -np.sum(coeff_mat, axis=1) dW = (X.T).dot(coeff_mat)
dW /= num_train
dW += reg * W
  dW = (X.T).dot(coeff_mat) 这里dW 的计算,使用向量计算。用一个取值的coeff_mat矩阵来确定取哪些x加入。看懂循环是如何操作的,就明白了这个这里取巧的从X.T来实现循环,时间倍数16倍。

中间有几次,发现loss老是益处报错,后来才发现应该是learning rate 太大了,把-5改成-6,就可以了。原因是这里没有学习速率衰减优化策略
												

assignment1SVM的一些经验的更多相关文章

  1. 移动硬盘不能识别的常见7种解决方案 ~ By 逆天经验

    服务器汇总:http://www.cnblogs.com/dunitian/p/4822808.html#iis 服务器异常: http://www.cnblogs.com/dunitian/p/45 ...

  2. 【原创经验分享】WCF之消息队列

    最近都在鼓捣这个WCF,因为看到说WCF比WebService功能要强大许多,另外也看了一些公司的招聘信息,貌似一些中.高级的程序员招聘,都有提及到WCF这一块,所以,自己也关心关心一下,虽然目前工作 ...

  3. iOS架构一个中型普通App的一些经验总结

    这一版比较完善的的App终于提交审核了.有时间写写自己的一些经验的总结了.自己主导的从0到比较成型的app到目前来说也只有两个,但是其中的很多东西都是大同小异.基本上是想到了什么就写什么,感觉写的不到 ...

  4. 从史上八大MySQL事故中学到的经验

    本文列举了史上八大MySQL宕机事件原因.影响以及人们从中学到的经验,文中用地震级数来类比宕机事件的严重性和后果,排在最严重层级前两位的是由于亚马逊AWS宕机故障(相当于地震十级和九级). 一.Per ...

  5. CentOS上 Mono 3.2.8运行ASP.NET MVC4经验

    周一到周三,折腾了两天半的时间,经历几次周折,在小蝶惊鸿的鼎力帮助下,终于在Mono 3.2.8上运行成功MVC4.在此总结经验如下: 系统平台的版本: CentOS 6.5 Mono 3.2.8 J ...

  6. 【腾讯Bugly经验分享】程序员的成长离不开哪些软技能?

    本文来自于腾讯bugly开发者社区,非经作者同意,请勿转载,原文地址:http://dev.qq.com/topic/57ce8068d4d44a246f72baf2 Dev Club 是一个交流移动 ...

  7. CI Weekly #6 | 再谈 Docker / CI / CD 实践经验

    CI Weekly 围绕『 软件工程效率提升』 进行一系列技术内容分享,包括国内外持续集成.持续交付,持续部署.自动化测试. DevOps 等实践教程.工具与资源,以及一些工程师文化相关的程序员 Ti ...

  8. C#异常处理经验(原则与方法)

         本文是异常处理经验性的文章,其实跟C#关系也不大.比较适合刚刚熟悉异常语法,而缺乏实战的读者.当然,经验老练的读者也可指出不足.给予意见.补充说明,一起完善文章,分享更多知识与经验.   1 ...

  9. 【原创经验分享】JQuery(Ajax)调用WCF服务

    最近在学习这个WCF,由于刚开始学 不久,发现网上的一些WCF教程都比较简单,感觉功能跟WebService没什么特别大的区别,但是看网上的介绍,就说WCF比WebService牛逼多少多少,反正我刚 ...

随机推荐

  1. MySQL内连接和外连接

    INNER JOIN(内连接,或等值连接):获取两个表中字段匹配关系的记录. LEFT JOIN(左连接):获取左表所有记录,即使右表没有对应匹配的记录. RIGHT JOIN(右连接): 与 LEF ...

  2. BZOJ4144: [AMPPZ2014]Petrol(最短路 最小生成树)

    题意 题目链接 Sol 做的时候忘记写题解了 可以参考这位大爷 #include<bits/stdc++.h> #define Pair pair<int, int> #def ...

  3. html基础-a标签-img标签-绝对/相对路径(3)

    美好的星期六,今天多写一点,争取早点写js这个有点小无聊. 一.先来讲点网页之间的跳转 (1).<a href=""></a>  href="这里 ...

  4. Java项目经验——程序员成长的钥匙

    本文转载至:http://geek.csdn.net/news/detail/109880,像我这样的菜鸟应该多看几遍这样的文章,学起来才更加有动力和方向. Java就是用来做项目的!Java的主要应 ...

  5. 葡萄城报表介绍:B/S 报表软件

    B/S 报表软件定义 B/S(Browser/Server,浏览器/服务器模式)也称 B/S 结构,是 WEB 兴起后的一种网络结构模式.B/S 模式是由最开始的 C/S(Client/Server, ...

  6. RSA与ECC的比较

    第六届国际密码学会议对应用于公钥密码系统的加密算法推荐了两种:基于大整数因子分解问题(IFP)的RSA算法和基于椭圆曲线上离散对数计算问题(ECDLP)的ECC算法.RSA算法的特点之一是数学原理简单 ...

  7. linux vim 快捷键

    vim命令模式输入a i o 这些命令进入插入模式 编辑模式命令模式输入双引号进入编辑模式 命令模式命令 命令 作用 :map Ctrl+V Ctrl+P I#<ESC> 自定义注释快捷键 ...

  8. Azure 和 Linux

    Azure 正在不断集结各种集成的公有云服务,包括分析.虚拟机.数据库.移动.网络.存储和 Web,因此很适合用于托管解决方案. Azure 提供可缩放的计算平台,允许即用即付,而无需投资购买本地硬件 ...

  9. Vue2学习笔记:事件对象、事件冒泡、默认行为

    1.事情对象 <!DOCTYPE html> <html> <head> <title></title> <meta charset= ...

  10. iOS设计模式 - 命令

    iOS设计模式 - 命令 原理图 说明 命令对象封装了如何对目标执行指令的信息,因此客户端或调用者不必了解目标的任何细节,却仍可以对他执行任何已有的操作.通过把请求封装成对象,客户端可以把它参数化并置 ...