sketch 相关论文
sketch 相关论文
- Sketch Simplification
We present a novel technique to simplify sketch drawings based on learning a series of convolution operators. In contrast to existing approaches that require vector images as input, we allow the more general and challenging input of rough raster sketches such as those obtained from scanning pencil sketches. We convert the rough sketch into a simplified version which is then amendable for vectorization. This is all done in a fully automatic way without user intervention. Our model consists of a fully convolutional neural network which, unlike most existing convolutional neural networks, is able to process images of any dimensions and aspect ratio as input, and outputs a simplified sketch which has the same dimensions as the input image. In order to teach our model to simplify, we present a new dataset of pairs of rough and simplified sketch drawings. By leveraging convolution operators in combination with efficient use of our proposed dataset, we are able to train our sketch simplification model. Our approach naturally overcomes the limitations of existing methods, e.g., vector images as input and long computation time; and we show that meaningful simplifications can be obtained for many different test cases. Finally, we validate our results with a user study in which we greatly outperform similar approaches and establish the state of the art in sketch simplification of raster images. - Sketch-Based Image Synthesis
When the input to pix2pix translation [9] is a badly drawn sketch, the output follows the input edges due to the strict alignment imposed by the translation process. In this paper we propose sketch-to-image generation, where the output edges do not necessarily follow the input edges. We
address the image generation problem using a novel joint image completion approach, where the sketch provides the image context for completing, or generating the output image.We train a deep generative model to learn the joint distribution of sketch and the corresponding image by using joint images. Our deep contextual completion approach has several advantages. First, the simple joint image representation allows for simple and effective definition of losses in the same joint image-sketch space, which avoids complicated issues in cross-domain learning. Second, while the output is related to its input overall, the generated features exhibit more freedom in appearance and do not strictly align with the input features. Third, from the joint image’s point of view, image and sketch are of no difference, thus exactly the same deep joint image completion network can be used for image-to-sketch generation. Experiments evaluated on three different datasets show that the proposed approach can generate more realistic images than the state-ofthe-arts on challenging inputs and generalize well on common categories. - Sketch-Based Image Synthesis
Recently, there have been several promising methods to generate realistic imagery from deep convolutional networks. These methods sidestep the traditional computer graphics rendering pipeline and instead generate imagery at the pixel level by learning from large collections of photos (e.g. faces or bedrooms). However, these methods are of limited utility because it is difficult for a user to control what the network produces. In this paper, we propose a deep adversarial image synthesis architecture that is conditioned on sketched boundaries and sparse color strokes to generate realistic cars, bedrooms, or faces. We demonstrate a sketch based image synthesis system which allows users to scribble over the sketch to indicate preferred color for objects. Our network can then generate convincing images that satisfy both the color and the sketch constraints of user. The network is feed-forward which allows users to see the effect of their edits in real time. We compare to recent work on sketch to image synthesis and show that our approach can generate more realistic, more diverse, and more controllable outputs. The architecture is also effective at user-guided colorization of grayscale images.
sketch 相关论文的更多相关文章
- Kintinuous 相关论文 Volume Fusion 详解
近几个月研读了不少RGBD-SLAM的相关论文,Whelan的Volume Fusion系列文章的效果确实不错,而且开源代码Kintinuous结构清晰,易于编译和运行,故把一些学习时自己的理解和经验 ...
- Neural ODE相关论文摘要翻译
*****仅供个人学习记录***** Neural Ordinary Differential Equations[2019] 论文地址:[1806.07366] Neural Ordinary Di ...
- ACL2016信息抽取与知识图谱相关论文掠影
实体关系推理与知识图谱补全 Unsupervised Person Slot Filling based on Graph Mining 作者:Dian Yu, Heng Ji 机构:Computer ...
- SDN网络虚拟化、资源映射等相关论文粗读
1. Control Plane Latency with SDN Network Hypervisors: The Cost of Virtualization 年份:2016 来源:IEEE NE ...
- 带状态论文粗读(三)[引用openstate的相关论文阅读]
一 文章名称:FLOWGUARD: Building Robust Firewalls for Software-Defined Networks 发表时间:2014 期刊来源:--- 解决问题: 一 ...
- 2017年研究生数学建模D题(前景目标检测)相关论文与实验结果
一直都想参加下数学建模,通过几个月培训学到一些好的数学思想和方法,今年终于有时间有机会有队友一起参加了研究生数模,but,为啥今年说不培训直接参加国赛,泪目~_~~,然后比赛前也基本没看,直接硬刚.比 ...
- MR 图像分割 相关论文摘要整理
<多分辨率水平集算法的乳腺MR图像分割> 针对乳腺 MR 图像信息量大.灰度不均匀.边界模糊.难分割的特点, 提出一种多分辨率水平集乳腺 MR图像分割算法. 算法的核心是首先利用小波多尺度 ...
- 分颜色通道SR的相关论文
1.SRCNN-译文.doc https://max.book118.com/html/2017/0628/118607667.shtm 见SRCNN翻译:彩色通道的实验 - wangxujin666 ...
- ELMO及前期工作 and Transformer及相关论文
论文1 https://arxiv.org/pdf/1705.00108.pdf Semi-supervised sequence tagging with bidirectional languag ...
随机推荐
- 从html代码里提取字符编码
#include <iostream>#include "regex"using namespace std;std::string str = R"( &l ...
- .Net WebApi 支持跨域访问使用 Microsoft.AspNet.WebApi.Cors
首先导入Cors库,通过程序包管理控制台导入 Install-Package Microsoft.AspNet.WebApi.Cors 引用库之后,我们需要进行简单的配置. 现在WebApiConfi ...
- Winform启动时隐藏不显示
我最终用了这个方法:1.MainForm的构造方法中添加: public MainForm() { InitializeComponent(); this.ShowInTaskbar = false; ...
- 跟我一起阅读Java源代码之HashMap(一)
最近闲的很,想和大家一起学习并讨论下Java的一些源代码以及其实现的数据结构, 不是什么高水平的东西,有兴趣的随便看看 1. 为什么要用Map,以HashMap为例 很多时候我们有这样的需求,我们需要 ...
- Git操作(提高篇)
Git操作(提高篇) 分支管理 分支就是科幻电影里面的平行宇宙,当你正在电脑前努力学习Git的时候,另一个你正在另一个平行宇宙里努力学习SVN. 假设你准备开发一个新功能,但是需要两周才能完成,第一周 ...
- javascript中对数组对象的深度拷贝
在前端开发的某些逻辑中,经常需要对现有的js对象创建副本,避免污染原始数据的情况. 如果是简单的一维数组对象,可以使用两个原生方法: 1.splice var arr1 = ['a', 'b', 'c ...
- Install Weblogic12C
1. 安装JDK软件 1.1)jdk版本选择 由于jdk编译出class文件是一个二进制文件,其中前四个字节是magic位,第五到第六个字节对应于minor和major.class文件的minor和m ...
- [USACO09OPEN]Ski Lessons
嘟嘟嘟 先考虑这两点: 1.如果我们有结束时间相同的课程,且达到的能力相同,那么我们一定选择开始时间最晚的. 2.如果有能力值相同的滑雪坡,我们一定选择时间最短的. 因此先预处理两个数组.cla[i] ...
- 20155314 2016-2017-2 《Java程序设计》实验二 Java面向对象程序设计
20155314 2016-2017-2 <Java程序设计>实验二 Java面向对象程序设计 实验内容 初步掌握单元测试和TDD 理解并掌握面向对象三要素:封装.继承.多态 初步掌握UM ...
- 记录一下iOS Leak的使用方法。
观测过程中不需要使用xcode.只需观察Leak工具即可 1:选中Xcode,点击左上角的Xcode.找到tool 然后找到instrument.如下图 2:打开instrument 找到Leak ...