题面

传送门

题解

先考虑全都放\(1\times 2\)的方块的方案,设防\(i\)列的方案数为\(g_i\),容易推出\(g_i=g_{i-1}+g_{i-2}\),边界条件为\(g_0=g_1=1\)

然后设\(f_i\)表示可以放\(1\times 1\)方块的方案。如果最右边一列不放\(1\times 1\),那么转移和之前一样,否则的话,另一个\(1\times 1\)必须放在\(1\)到\(i-2\)列,且根据奇偶性另一个方块放的位置是唯一的,而第一个方块左边全都是\(1\times 2\)的方块,我们令\(h_i\)表示\(g_i\)的前缀和,那么容易写出\(f_i\)的转移式

\[f_i=f_{i-1}+f_{i-2}+2h_{i-3}
\]

因为\(g\)是一个类似于斐波那契数列的东西,所以易知\(h_i=g_{i+2}-1\)

\[f_i=f_{i-1}+f_{i-2}+2g_{i-1}-2
\]

维护一个\(5\times 5\)的矩阵就可以矩阵快速幂了

//minamoto
#include<bits/stdc++.h>
#define R register
#define inline __inline__ __attribute__((always_inline))
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
const int P=1e9+7;
inline void upd(R int &x,R int y){(x+=y)>=P?x-=P:0;}
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
struct Matrix{
int a[5][5];
Matrix(){memset(a,0,sizeof(a));}
inline int* operator [](const int &x){return a[x];}
Matrix operator *(Matrix &b){
Matrix res;
fp(i,0,4)fp(k,0,4)fp(j,0,4)upd(res[i][j],mul(a[i][k],b[k][j]));
return res;
}
}G[35];
int n;
int solve(int n){
if(n<=3)return n==3?2:0;
Matrix res;res[0][2]=res[0][3]=1,res[0][4]=P-2;
n-=1;
fp(i,0,31)if(n>>i&1)res=res*G[i];
return res[0][0];
}
int main(){
// freopen("testdata.in","r",stdin);
int T;scanf("%d",&T);
G[0][0][0]=G[0][0][1]=G[0][1][0]=G[0][2][2]=G[0][2][3]=G[0][3][2]=G[0][4][4]=G[0][4][0]=1;
G[0][2][0]=2;
fp(i,1,32)G[i]=G[i-1]*G[i-1];
while(T--)scanf("%d",&n),printf("%d\n",solve(n));
return 0;
}

LOJ#3086. 「GXOI / GZOI2019」逼死强迫症(矩阵快速幂)的更多相关文章

  1. 【LOJ】#3086. 「GXOI / GZOI2019」逼死强迫症

    LOJ#3086. 「GXOI / GZOI2019」逼死强迫症 这个就是设状态为\(S,j\)表示轮廓线为\(S\),然后用的1×1个数为j 列出矩阵转移 这样会算重两个边相邻的,只要算出斐波那契数 ...

  2. 「GXOI / GZOI2019」逼死强迫症——斐波那契+矩阵快速幂

    题目 [题目描述] ITX351 要铺一条 $2 \times N$ 的路,为此他购买了 $N$ 块 $2 \times 1$ 的方砖.可是其中一块砖在运送的过程中从中间裂开了,变成了两块 $1 \t ...

  3. Loj #3085. 「GXOI / GZOI2019」特技飞行

    Loj #3085. 「GXOI / GZOI2019」特技飞行 题目描述 公元 \(9012\) 年,Z 市的航空基地计划举行一场特技飞行表演.表演的场地可以看作一个二维平面直角坐标系,其中横坐标代 ...

  4. LOJ#3083.「GXOI / GZOI2019」与或和_单调栈_拆位

    #3083. 「GXOI / GZOI2019」与或和 题目大意 给定一个\(N\times N\)的矩阵,求所有子矩阵的\(AND(\&)\)之和.\(OR(|)\)之和. 数据范围 \(1 ...

  5. LOJ#3088. 「GXOI / GZOI2019」旧词(树剖+线段树)

    题面 传送门 题解 先考虑\(k=1\)的情况,我们可以离线处理,从小到大对于每一个\(i\),令\(1\)到\(i\)的路径上每个节点权值增加\(1\),然后对于所有\(x=i\)的询问查一下\(y ...

  6. LOJ#3087. 「GXOI / GZOI2019」旅行者(最短路)

    题面 传送门 题解 以所有的感兴趣的城市为起点,我们正着和反着各跑一边多源最短路.记\(c_{0/1,i}\)分别表示正图/反图中离\(i\)最近的起点,那么对于每条边\((u,v,w)\),如果\( ...

  7. LOJ#3085. 「GXOI / GZOI2019」特技飞行(KDtree+坐标系变换)

    题面 传送门 前置芝士 请确定您会曼哈顿距离和切比雪夫距离之间的转换,以及\(KDtree\)对切比雪夫距离的操作 题解 我们发现\(AB\)和\(C\)没有任何关系,所以关于\(C\)可以直接暴力数 ...

  8. LOJ#3084. 「GXOI / GZOI2019」宝牌一大堆(递推)

    题面 传送门 题解 为什么又是麻将啊啊啊!而且还是我最讨厌的爆搜类\(dp\)-- 首先国士无双和七对子是可以直接搞掉的,关键是剩下的,可以看成\(1\)个雀头加\(4\)个杠子或面子 直接\(dp\ ...

  9. LOJ#3083. 「GXOI / GZOI2019」与或和(单调栈)

    题面 传送门 题解 按位考虑贡献,如果\(mp[i][j]\)这一位为\(1\)就设为\(1\)否则设为\(0\),对\(or\)的贡献就是全为\(1\)的子矩阵个数,对\(and\)的贡献就是总矩阵 ...

随机推荐

  1. struts框架值栈问题七之EL表达式也会获取到值栈中的数据

    7. 问题七:为什么EL也能访问值栈中的数据? * StrutsPreparedAndExecuteFilter的doFilter代码中 request = prepare.wrapRequest(r ...

  2. mvc下ajax请求遇到session超时简单处理方式

    转自:http://blog.csdn.net/yeyicsdn/article/details/50032787 参考网址:http://www.cnblogs.com/RachelChen/p/5 ...

  3. C语言中以字符串形式输出枚举变量

    C语言中以字符串形式输出枚举变量 摘自:https://blog.csdn.net/haifeilang/article/details/41079255 2014年11月13日 15:17:20 h ...

  4. group by 和 distinct 的区别

    SELECT fs.card_id, fs. NAME, fs.email, fs.phone_num, fs.weixin_num, fs.permission, fs.open_id FROM f ...

  5. activemq.bat 在window7 x64下启动(安装)报错解决方案

    在启动  apache-activemq-5.15.2/activemq.bat  时候报错,提示以下信息: wrapper | --> Wrapper Started as Consolewr ...

  6. iOS与PHP/Android AES128 ECB NoPadding加密

    前言 谈谈AES加密,网上有很多的版本,当我没有真正在加密安全问题前,总以为百度出来某个AES加密算法就可以直接使用,实际上当我真正要做加密时,遇到了很多的坑,原来不是拿过来就能用的.写下本篇文章,记 ...

  7. KindEditor解决上传视频不能在手机端显示的问题

    KindEditor自带的上传视频生成的HTML代码为<embed>,在手机端并不支持.于是可以自己在控件里增加生成video标签相关代码. 参考https://www.jianshu.c ...

  8. Leed code 11. Container With Most Water

    public int maxArea(int[] height) { int left = 0, right = height.length - 1; int maxArea = 0; while ( ...

  9. java基础-day4

    第04天 java基础语法 今日内容介绍 u Random u 数组 第1章   Random 1.1      产生整数随机数 1.1.1    Random的使用步骤 我们想产生1~100(包含1 ...

  10. Codeforces 632D Longest Subsequence 2016-09-28 21:29 37人阅读 评论(0) 收藏

    D. Longest Subsequence time limit per test 2 seconds memory limit per test 256 megabytes input stand ...