Chapter 7(图)
1.Prim算法生成最小生成树
//Prim算法生成最小生成树
void MiniSpanTree_Prim(MGraph G)
{
int min,i,j,k;
int adjvex[MAXVEX];
int lowcost[MAXVEX];
lowcost[0] = 0;
adjvex[0] = 0;
for(i = 1;i < G.numVertexes;i++)
{
lowcost[i] = G.arc[0][i];
adjvex[i] = 0;
}
for(i = 1;i < G.numVertexes;i++)
{
min = INFINITY;
j = 1;k = 0;
while(j < G.numVertexes)
{
if(lowcost[j] != 0 && lowcost[j] < min)
{
min = lowcost[j];
k = j;
}
j++;
}
printf("(%d,%d)",adjvex[k],k);
lowcost[k] = 0;
for(j = i;j < G.numVertexes;j++)
{
if(lowcost[j]!=0 && G.arc[k][j] < lowcost[j])
{
lowcost[j] = G.arc[k][j];
adjvex[j] = k;
}
}
}
}
//Prim算法生成最小生成树
void MiniSpanTree_Prim(MGraph G)
{
int min,i,j,k;
int adjvex[MAXVEX];
int lowcost[MAXVEX];
lowcost[0] = 0;
adjvex[0] = 0;
for(i = 1;i < G.numVertexes;i++)
{
lowcost[i] = G.arc[0][i];
adjvex[i] = 0;
}
for(i = 1;i < G.numVertexes;i++)
{
min = INFINITY;
j = 1;k = 0;
while(j < G.numVertexes)
{
if(lowcost[j] != 0 && lowcost[j] < min)
{
min = lowcost[j];
k = j;
}
j++;
}
printf("(%d,%d)",adjvex[k],k);
lowcost[k] = 0;
for(j = i;j < G.numVertexes;j++)
{
if(lowcost[j]!=0 && G.arc[k][j] < lowcost[j])
{
lowcost[j] = G.arc[k][j];
adjvex[j] = k;
}
}
}
}
//Kruskal算法生成最小生成树
void MiniSpanTree_Kruskal(MGraph G)
{
int i,n,m;
Edge edges[MAXEDGE];
int parentp[MAXVEX];
//省略将邻接矩阵转化为边集数组edges并按权由小到大排序的代码
for(i = 0; i < G.numEdges;i++)
{
parent[i] = 0;
}
for(i = o;i < G.numEdges;i++)
{
n = Find(parent,edges[i].begin);
m = Find(parent,edges[i].end);
if(n != m)
{
parent[n] = m;
printf("(%d,%d) %d ",edges[i].begin,edges[i].end,edges[i].weight);
}
}
}
int Find(int *parent,int f)
{
while(parent[f] > 0)
{
f = parent[f];
}
return f;
}
//Kruskal算法生成最小生成树
void MiniSpanTree_Kruskal(MGraph G)
{
int i,n,m;
Edge edges[MAXEDGE];
int parentp[MAXVEX];
//省略将邻接矩阵转化为边集数组edges并按权由小到大排序的代码
for(i = 0; i < G.numEdges;i++)
{
parent[i] = 0;
}
for(i = o;i < G.numEdges;i++)
{
n = Find(parent,edges[i].begin);
m = Find(parent,edges[i].end);
if(n != m)
{
parent[n] = m;
printf("(%d,%d) %d ",edges[i].begin,edges[i].end,edges[i].weight);
}
}
}
int Find(int *parent,int f)
{
while(parent[f] > 0)
{
f = parent[f];
}
return f;
}
//迪杰斯特拉(Dijkstra)算法
#define MAXVEX 9
#define INFINITY 65535
typedef int Patharc[MAXVEX];
typedef int ShortPathTable[MAXVEX];
void ShortestPath_Dijkstra(MGraph G,INT V0,Patharc *P,ShortPathTable *D)
{
int v,w,k,min;
int final[MAXVEX];
for(v = 0;v < G.numVertexes;v++)
{
final[v] = 0;
(*D)[v] = G.arc[v0][v];
(*P)[v] = 0;
}
(*D)[v0] = 0;
final[vo] = 1;
for(v = 1;v < G.numVertexes;w++)
{
min = INFINITY;
for(w = 0;w < G.numVertexes;w++)
{
if(!final[w] && (*D)[w] < min)
{
k = w;
min = (*D)[w];
}
}
final[k] = 1;
for(w = 0;w < G.numVertexes;w++)
{
if(!final[w] && (min+G.arc[k][w])< (*D)[w])
{
(*D)[w] = min + G.arc[k][w];
(*P)[w] = k;
}
}
}
}
//迪杰斯特拉(Dijkstra)算法
#define MAXVEX 9
#define INFINITY 65535
typedef int Patharc[MAXVEX];
typedef int ShortPathTable[MAXVEX];
void ShortestPath_Dijkstra(MGraph G,INT V0,Patharc *P,ShortPathTable *D)
{
int v,w,k,min;
int final[MAXVEX];
for(v = 0;v < G.numVertexes;v++)
{
final[v] = 0;
(*D)[v] = G.arc[v0][v];
(*P)[v] = 0;
}
(*D)[v0] = 0;
final[vo] = 1;
for(v = 1;v < G.numVertexes;w++)
{
min = INFINITY;
for(w = 0;w < G.numVertexes;w++)
{
if(!final[w] && (*D)[w] < min)
{
k = w;
min = (*D)[w];
}
}
final[k] = 1;
for(w = 0;w < G.numVertexes;w++)
{
if(!final[w] && (min+G.arc[k][w])< (*D)[w])
{
(*D)[w] = min + G.arc[k][w];
(*P)[w] = k;
}
}
}
}
//弗洛伊德(Floyd算法)
typedef int PathMatirx[MAXVEX][MAXVEX];
typedef int ShortPathTable[MAXVEX][MAXVEX];
void ShortestPath_Floyd(MGraph G,Pathmatirx *P,ShortPathTable *D)
{
int v,w,k;
for(v = 0;v < G.numVertexes; ++v)
{
for(w = 0;w < G.numVertexes;++w)
{
(*D)[v][w] = G.matirx[v][w];
(*P)[v][w] = w;
}
}
for(k = 0;k < G.numVertexes;++k)
{
for(v = 0;v < G.numVertexes;++v)
{
for(w = 0;w < G.numVertexes;++w)
{
if((*D)[v][w] > (*D)[v][k]+(*D)[k][w])
{
(*D)[v][w] = (*D)[v][w]+(*D)[k][w];
(*P)[v][w] = (*P)[v][k];
}
}
}
}
}
//最短路径显示代码段
for(v = 0;v < Q.numVertexes;++v)
{
for(w = v+1;w < G.numVertexes;w++)
{
printf("v%d-v%d weight: %d ",v,w,D[v][w]);
k = P[v][w];
printf(" path: %d",v);
while(k != w)
{
printf(" -> %d",k);
k = P[k][w];
}
printf(" -> %d\n",w);
}
printf("\n");
}
//弗洛伊德(Floyd算法)
typedef int PathMatirx[MAXVEX][MAXVEX];
typedef int ShortPathTable[MAXVEX][MAXVEX];
void ShortestPath_Floyd(MGraph G,Pathmatirx *P,ShortPathTable *D)
{
int v,w,k;
for(v = 0;v < G.numVertexes; ++v)
{
for(w = 0;w < G.numVertexes;++w)
{
(*D)[v][w] = G.matirx[v][w];
(*P)[v][w] = w;
}
}
for(k = 0;k < G.numVertexes;++k)
{
for(v = 0;v < G.numVertexes;++v)
{
for(w = 0;w < G.numVertexes;++w)
{
if((*D)[v][w] > (*D)[v][k]+(*D)[k][w])
{
(*D)[v][w] = (*D)[v][w]+(*D)[k][w];
(*P)[v][w] = (*P)[v][k];
}
}
}
}
}
//最短路径显示代码段
for(v = 0;v < Q.numVertexes;++v)
{
for(w = v+1;w < G.numVertexes;w++)
{
printf("v%d-v%d weight: %d ",v,w,D[v][w]);
k = P[v][w];
printf(" path: %d",v);
while(k != w)
{
printf(" -> %d",k);
k = P[k][w];
}
printf(" -> %d\n",w);
}
printf("\n");
}
附件列表
Chapter 7(图)的更多相关文章
- Chapter 4 图
Chapter 4 图 . 1- 图的存储结构 无向图:对称 有向图:…… 2- 图的遍历 1 深度优先搜索(DFS) 类似于二叉树的先序遍历 2 广度优先搜索(BFS) 类似于二叉树 ...
- 【译】x86程序员手册13-第5章 内存管理
Chapter 5 Memory Management 内存管理 The 80386 transforms logical addresses (i.e., addresses as viewed b ...
- 《算法导论》习题解答 Chapter 22.1-5(求平方图)
一.邻接矩阵实现 思路:如果是邻接矩阵存储,设邻接矩阵为A,则A*A即为平方图,只需要矩阵相乘即可: 伪代码: for i=1 to n for j=1 to n for k=1 to n resul ...
- 《算法导论》习题解答 Chapter 22.1-3(转置图)
一.邻接表实现 思路:一边遍历,一边倒置边,并添加到新的图中 邻接表实现伪代码: for each u 属于 Vertex for v 属于 Adj[u] Adj1[v].insert(u); 复杂度 ...
- Android Programming: Pushing the Limits -- Chapter 7:Android IPC -- Messenger
Messenger类实际是对Aidl方式的一层封装.本文只是对如何在Service中使用Messenger类实现与客户端的通信进行讲解,对Messenger的底层不做说明.阅读Android Prog ...
- [转]第四章 使用OpenCV探测来至运动的结构——Chapter 4:Exploring Structure from Motion Using OpenCV
仅供参考,还未运行程序,理解部分有误,请参考英文原版. 绿色部分非文章内容,是个人理解. 转载请注明:http://blog.csdn.net/raby_gyl/article/details/174 ...
- PRML Chapter 2. Probability Distributions
PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...
- WITCH CHAPTER 0 [cry] 绝密开发中的史克威尔艾尼克斯的DX12技术演示全貌
西川善司的[WITCH CHAPTER 0 cry]讲座 ~绝密开发中的史克威尔艾尼克斯的DX12技术演示全貌 注:日文原文地址: http://pc.watch.impress.co.jp/d ...
- Chapter 3: Connector(连接器)
一.概述 Tomcat或者称之为Catalina(开发名称),可以简化为两个主要的模块,如下图: 多个Connector关联一个Container.之所以需要多个Connector,是为了处理多种协议 ...
随机推荐
- CentOS6安装与运行R脚本
http://blog.csdn.net/bdchome/article/details/47811763
- DataGridView 复选框 操作大全
DataGridViewCheckBoxColumn dtCheck = new DataGridViewCheckBoxColumn(); dtCheck.DataPropertyName = &q ...
- 团队项目-北航MOOC系统Android客户端 NABC
北航MOOC系统Android客户端 NABC (N) Need 需求 MOOC的全名是Massive Open Online Course,被称作大型开放式网络课程.2012年,美国的顶尖大学陆续设 ...
- 面向对象OO第5-7次作业总结
面向对象OO第5-7次作业总结 学习OO七周了,深切的感受到了这门课程的不友好.前三次作业能够算是勉强地通过了,但是从第五次作业开始就完全GG了.这三次作业,从多线程电梯开始,然后文件监控,然后到出租 ...
- 第二阶段Sprint冲刺会议9
进展:查看有关“共享平台”的资料,看如何实现上传下载功能,并尝试编码,没有成功.
- 数据库,总结,新技能get
上来先粘代码吧,这篇本来就不是用来让你们看的,我就是单纯的记录下,嗯~对,总结!!! 首先:first //绑定年份 YearSearch.Items.Clear(); for (int i = Da ...
- 读书笔记之java编程思想2
今天将第一章余下的部分读完了,余下部分讲解了java单继承的特点,单继承保证了所有的子类都有一个基类,这使得java所实现的垃圾回收器的实现变得简单了很多,单继承保证了所有的对象都具有一些功能,使得参 ...
- 调研Android的开发环境的发展演变
在 知道要做基于移动端的项目实践时,我就选定了Android,回来的时候查了很多相关的知识,很多人都在问开发安卓软件,使用eclipse还是用 Android studio?其实,也没有一个准确的答案 ...
- 深入理解Java类加载器(2)
1 基本信息 每个开发人员对Java.lang.ClassNotFoundExcetpion这个异常肯定都不陌生,这背后就涉及到了java技术体系中的类加载.Java的类加载机制是技术体系中比较核心的 ...
- grunt入门讲解2:如何使用 Gruntfile 配置任务
Grunt的task配置都是在 Gruntfile 中的grunt.initConfig方法中指定的.此配置主要包括以任务名称命名的属性,和其他任意数据.一旦这些代表任意数据的属性与任务所需要的属性相 ...