bzoj 2011
决策单调性,对于一个1D/1D(状态是一维,转移也是一维)的DP,如果DP的决策具有单调性,那么就可以做到O(nlogn)的复杂度完成DP。
感谢《1D/1D 动态规划优化初步》的作者。
/**************************************************************
Problem: 2216
User: idy002
Language: C++
Result: Accepted
Time:4916 ms
Memory:14476 kb
****************************************************************/ #include <cstdio>
#include <algorithm>
#include <cmath>
#define N 500010
using namespace std; struct Trid {
int p, l, r;
Trid(){}
Trid( int p, int l, int r ):p(p),l(l),r(r){}
}; int n;
int aa[N];
int f[N], g[N], h[N];
Trid stk[N]; int top; double calc( int j, int i ) {
return aa[j]-aa[i]+sqrt(abs(i-j));
}
void dodp( int dp[N] ) {
stk[top=] = Trid(,,n);
for( int i=; i<n; i++ ) {
if( calc(stk[top].p,n)>calc(i,n) ) continue; while( stk[top].l>=i &&
calc(stk[top].p,stk[top].l)<calc(i,stk[top].l) )
top--;
if( stk[top].r==i- ) {
stk[++top] = Trid( i, i, n );
} else {
int lf = max( stk[top].l+, i );
int rg = min( stk[top].r+, n );
int p = stk[top].p;
while( lf<rg ) {
int mid=(lf+rg)>>;
if( calc(p,mid) > calc(i,mid) ) lf=mid+;
else rg=mid;
}
stk[top].r = lf-;
stk[++top] = Trid( i, lf, n );
}
}
for( int i=; i<=top; i++ )
for( int j=stk[i].l; j<=stk[i].r; j++ )
dp[j] = stk[i].p;
}
int main() {
scanf( "%d", &n );
for( int i=; i<=n; i++ )
scanf( "%d", aa+i );
dodp(f);
reverse( aa+, aa++n );
dodp(g);
reverse( aa+, aa++n ); for( int i=; i<=n; i++ )
g[i] = n+-g[i];
reverse( g+, g++n ); for( int i=; i<=n; i++ )
if( calc(f[i],i)>calc(g[i],i) ) h[i]=f[i];
else h[i]=g[i];
for( int i=; i<=n; i++ )
printf( "%lld\n", (long long)ceil(calc(h[i],i)) );
}
bzoj 2011的更多相关文章
- BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4805 Solved: 2325[Submit][Sta ...
- BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数
BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...
- [BZOJ 2299][HAOI 2011]向量 题解(裴蜀定理)
[BZOJ 2299][HAOI 2011]向量 Description 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), ...
- bzoj 2441 [中山市选2011]小W的问题
bzoj 2441 [中山市选2011]小W的问题 Description 有一天,小W找了一个笛卡尔坐标系,并在上面选取了N个整点.他发现通过这些整点能够画出很多个"W"出来.具 ...
- BZOJ 2150 cogs 1861 [国家集训队2011]部落战争
题目描述 lanzerb的部落在A国的上部,他们不满天寒地冻的环境,于是准备向A国的下部征战来获得更大的领土. A国是一个M*N的矩阵,其中某些地方是城镇,某些地方是高山深涧无人居住.lanzerb把 ...
- [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明)
[BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[ ...
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
- 【BZOJ】【2440】【中山市选2011】完全平方数
莫比乌斯函数/容斥原理 PoPoQQQ讲义引入例题= = 比较水……就是莫比乌斯函数的简单应用,也可理解为乱容斥一下…… 二分答案——>求1~x有多少个无平方因子的数Q(x). 引用一下PoPo ...
- Bzoj 2346: [Baltic 2011]Lamp dijkstra,堆
2346: [Baltic 2011]Lamp Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 428 Solved: 179[Submit][Sta ...
随机推荐
- 洛谷 P4093: bzoj 4553: [HEOI2016/TJOI2016]序列
题目传送门:洛谷P4093. 题意简述: 给定一个长度为 \(n\) 的序列 \(a\). 同时这个序列还可能发生变化,每一种变化 \((x_i,y_i)\) 对应着 \(a_{x_i}\) 可能变成 ...
- Windows 8 应用程序前后台切换事件监听
在一些情况下,我们需要监听应用程序切换到后台或者从后台切换至前台的事件,从而进行相关处理操作.支付宝应用锁屏(IOS,Android平台)的处理中就需要监听此事件,在用户将应用切换至后台一段时间后再切 ...
- Python版飞机大战
前面学了java用java写了飞机大战这次学完python基础后写了个python版的飞机大战,有兴趣的可以看下. 父类是飞行物类是所有对象的父类,setting里面是需要加载的图片,你可以换称自己的 ...
- ExtJs对js基本语法扩展支持
ExtJs对js基本语法扩展支持 本篇主要介绍一下ExtJs对JS基本语法的扩展支持,包括动态加载.类的封装等. 一.动态引用加载 ExtJs有庞大的类型库,很多类可能在当前的页面根本不会用到,我们可 ...
- Robust Mesh Watermarking
之前看了一篇题为"Robust Mesh Watermarking"的论文,查阅资料的时候发现了一篇与之很相似的名为"三维模型数字水印系统的设计与实现"的中文论 ...
- javaweb笔记二
web服务器:实现服务器的开启,监听端口,接收客户端请求,产生响应.响应信息只能是静态的HTML,缺乏灵活性.web容器:是辅助应用的一种方式,是为了解决web服务器缺陷而产生的.可以将请求信息处理完 ...
- 利用Requests库写爬虫
基本Get请求: #-*- coding:utf-8 -*- import requests url = 'http://www.baidu.com' r = requests.get(url) pr ...
- VS2015的对象浏览器的使用
用vs开发这么久了,还是第一次用上对象浏览器的功能,第一次用有一点懵逼,记录一下. 这个图标是项目 这是代表类,下面可以展开看到基类 在右边可以看到这个类的方法和成员 这个代表结构体 同样的右边显示成 ...
- 20165333实验三 敏捷开发与XP实践
实验内容 一.参考 http://www.cnblogs.com/rocedu/p/6371315.html#SECCODESTANDARD 安装alibaba 插件,解决代码中的规范问题. 在IDE ...
- AutoCompleteTextView,Spinner,消息提示
package com.example.wang.testapp2; import android.app.Notification; import android.app.NotificationM ...