Codeforces Round #313 (Div. 1) C. Gerald and Giant Chess DP
C. Gerald and Giant Chess
Time Limit: 20 Sec
Memory Limit: 256 MB
题目连接
http://codeforces.com/contest/559/problem/C
Description
Gerald got a very curious hexagon for his birthday. The boy found out that all the angles of the hexagon are equal to . Then he measured the length of its sides, and found that each of them is equal to an integer number of centimeters. There the properties of the hexagon ended and Gerald decided to draw on it.
He painted a few lines, parallel to the sides of the hexagon. The lines split the hexagon into regular triangles with sides of 1 centimeter. Now Gerald wonders how many triangles he has got. But there were so many of them that Gerald lost the track of his counting. Help the boy count the triangles.
Input
The first line of the input contains three integers: h, w, n — the sides of the board and the number of black cells (1 ≤ h, w ≤ 105, 1 ≤ n ≤ 2000).
Next n lines contain the description of black cells. The i-th of these lines contains numbers ri, ci (1 ≤ ri ≤ h, 1 ≤ ci ≤ w) — the number of the row and column of the i-th cell.
It is guaranteed that the upper left and lower right cell are white and all cells in the description are distinct.
Output
Print a single line — the remainder of the number of ways to move Gerald's pawn from the upper left to the lower right corner modulo109 + 7.
Sample Input
3 4 2
2 2
2 3
Sample Output
2
HINT
题意
一个n*m的图,让你从左上角走到右下角,有一些点不能经过,问你有多少种方法
题解:
dp[i]表示不经过黑点的方案数
fi=Cxixi+yi−∑(xj<=xi,yj<=yi)C(xi−xj)(xi−xj)+(yi−yj)∗fj
然后一路小跑就好了
http://blog.csdn.net/popoqqq/article/details/46121519
代码
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define test freopen("test.txt","r",stdin)
#define maxn 1010000
#define M 10000
#define mod 1000000007
#define eps 1e-9
const int inf=0x3f3f3f3f;
const ll infll = 0x3f3f3f3f3f3f3f3fLL;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
//************************************************************************************** struct Point
{
long long x,y;
}points[];
bool cmp(Point a,Point b)
{
if(a.x==b.x)
return a.y<b.y;
return a.x<b.x;
}
ll p=mod;
ll fac[maxn];
ll qpow(ll a,ll b)
{
ll ans=;a%=mod;
for(ll i=b;i;i>>=,a=a*a%mod)
if(i&)ans=ans*a%mod;
return ans;
}
ll C(ll n,ll m)
{
if(m>n||m<)return ;
ll s1=fac[n],s2=fac[n-m]*fac[m]%mod;
return s1*qpow(s2,mod-)%mod;
}
ll f[maxn];
int main()
{
fac[]=;
for(int i=;i<maxn;i++)
fac[i]=fac[i-]*i%mod;
int n=read(),m=read(),k=read();
for(int i=;i<=k;i++)
{
points[i].x=read();
points[i].y=read();
points[i].x-=;
points[i].y-=;
}
points[++k].x=n-;
points[k].y=m-;
sort(points+,points+k+,cmp);
for(int i=;i<=k;i++)
{
f[i]=C(points[i].x+points[i].y,points[i].x);
for(int j=;j<i;j++)
{
if(points[j].y<=points[i].y)
{
f[i]+=(p-f[j]*C(points[i].x-points[j].x+points[i].y-points[j].y,points[i].x-points[j].x)%p);
f[i]%=p;
}
}
}
cout<<f[k]%p<<endl;
}
Codeforces Round #313 (Div. 1) C. Gerald and Giant Chess DP的更多相关文章
- dp - Codeforces Round #313 (Div. 1) C. Gerald and Giant Chess
Gerald and Giant Chess Problem's Link: http://codeforces.com/contest/559/problem/C Mean: 一个n*m的网格,让你 ...
- Codeforces Round #313 (Div. 2) E. Gerald and Giant Chess (Lucas + dp)
题目链接:http://codeforces.com/contest/560/problem/E 给你一个n*m的网格,有k个坏点,问你从(1,1)到(n,m)不经过坏点有多少条路径. 先把这些坏点排 ...
- Codeforces Round #313 (Div. 1) C. Gerald and Giant Chess
这场CF又掉分了... 这题题意大概就给一个h*w的棋盘,中间有一些黑格子不能走,问只能向右或者向下走的情况下,从左上到右下有多少种方案. 开个sum数组,sum[i]表示走到第i个黑点但是不经过其他 ...
- Codeforces Round #313 (Div. 1) A. Gerald's Hexagon
Gerald's Hexagon Problem's Link: http://codeforces.com/contest/559/problem/A Mean: 按顺时针顺序给出一个六边形的各边长 ...
- Codeforces Round #313 (Div. 2) C. Gerald's Hexagon 数学
C. Gerald's Hexagon Time Limit: 2 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/559/pr ...
- Codeforces Round #313 (Div. 1) A. Gerald's Hexagon 数学题
A. Gerald's Hexagon Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/559/p ...
- Codeforces Round #313 (Div. 2) B. Gerald is into Art 水题
B. Gerald is into Art Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/560 ...
- 【打CF,学算法——三星级】Codeforces Round #313 (Div. 2) C. Gerald's Hexagon
[CF简单介绍] 提交链接:http://codeforces.com/contest/560/problem/C 题面: C. Gerald's Hexagon time limit per tes ...
- Codeforces Round #313 (Div. 2) C. Gerald's Hexagon(补大三角形)
C. Gerald's Hexagon time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
随机推荐
- linux arm的存储分布那些事之一【转】
转自:http://blog.csdn.net/xiaojsj111/article/details/11724081 linux arm的存储分布那些事之一 linux arm 内存分布总览 上图是 ...
- linux下的usb抓包方法【转】
转自:http://blog.chinaunix.net/uid-11848011-id-4508834.html 1.配置内核使能usb monitor: make menuconfig ...
- oracle11g字符集问题之一
select * from T_WORK_EXPERIENCE t where ROLE=N'被雇佣者' 因为ROLE为NVARCHAR2(30),所以要加N.pl/sql developer 中可以 ...
- git内部原理
Git 内部原理 无论是从之前的章节直接跳到本章,还是读完了其余章节一直到这——你都将在本章见识到 Git 的内部工作原理 和实现方式. 我们发现学习这部分内容对于理解 Git 的用途和强大至关重要. ...
- java 多线程总结篇2之——Thread类及常用函数
此片文章主要总结的是Thread类及相关的基础概念和API,首先需要厘清线程调度中的几个基本概念: 一.线程调度的基本方法 1.调整线程优先级:Java线程有优先级,优先级高的线程会获得较多的运行机会 ...
- fedora常见问题和解决方案
fedora作为linux主流发行版之一,大部分功能还是很赞的.只是在美观性和其他一些细节上还是需要手工调整才有更加体验. 以下解决方案,使用fedora20+gnome3环境 eclipse界面难看 ...
- C++ "multiple definition of .. first defined here"
C++ "multiple definition of .. first defined here" 在C++中,有时候需要在不同文件中使用同一个变量.对于这类变量如果处理不当,很 ...
- PHP array_key_exists() 函数(判断某个数组中是否存在指定的 key)
定义和用法 array_key_exists() 函数判断某个数组中是否存在指定的 key,如果该 key 存在,则返回 true,否则返回 false. 语法 array_key_exists(ke ...
- mysql 闪回测试
由于前面出现过几个需求,或者误操作,或者测试,需要我把某张表恢复到操作之前的一个状态,前面在生产中有过几次经历,实在太痛苦了,下面是一张表被误删除了,我的步骤是: 1 用全备恢复整个库(恢复到其他环 ...
- CRLF LF CR
The Carriage Return (CR) character (0x0D, \r) moves the cursor to the beginning of the line without ...