zoj 3537 区间dp+计算几何
题意:给定n个点的坐标,先问这些点是否能组成一个凸包,如果是凸包,问用不相交的线来切这个凸包使得凸包只由三角形组成,根据costi, j = |xi + xj| * |yi + yj| % p算切线的费用,问最少的切割费用。
链接:点我
题解:点我
2015-07-20:专题复习
代码稍微修改了一下,顺便发现题号写错了
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
using namespace std;
#define MOD 1000000007
const int INF=0x3f3f3f3f;
const double eps=1e-;
typedef long long ll;
#define cl(a) memset(a,0,sizeof(a))
#define ts printf("*****\n");
const int MAXN=;
int n,m;
int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < )return -;
else return ;
}
struct Point
{
int x,y;
Point(){}
Point(double _x,double _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
//叉积
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
//点积
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
//绕原点旋转角度B(弧度值),后x,y的变化
};
Point list[MAXN];
int Stack[MAXN],top;
double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
}
//相对于list[0]的极角排序
bool _cmp(Point p1,Point p2)
{
double tmp=(p1-list[])^(p2-list[]);
if(sgn(tmp)>)return true;
else if(sgn(tmp)== && sgn(dist(p1,list[]) - dist(p2,list[])) <= )
return true;
else return false;
}
void Graham(int n)
{
Point p0;
int k=;
p0=list[];
//找最下边的一个点
for(int i=;i < n;i++)
{
if( (p0.y>list[i].y) || (p0.y==list[i].y && p0.x>list[i].x) )
{
p0=list[i];
k=i;
}
}
swap(list[k],list[]);
sort(list+,list+n,_cmp);
if(n==)
{
top=;
Stack[]=;
return;
}
if(n==)
{
top=;
Stack[]=;
Stack[]=;
return ;
}
Stack[]=;
Stack[]=;
top=;
for(int i=;i < n;i++)
{
while(top> && sgn((list[Stack[top-]]-list[Stack[top-]])^(list[i]-list[Stack[top-]])) <= )
top--;
Stack[top++]=i;
}
}
int cost[MAXN][MAXN];
int dis(Point p1,Point p2)//计算题目定义的cost
{
return abs(p1.x+p2.x)*abs(p1.y+p2.y)%m;
}
int dp[MAXN][MAXN];
int main()
{
int i,j,k;
#ifndef ONLINE_JUDGE
freopen("1.in","r",stdin);
#endif
while(~scanf("%d%d",&n,&m))
{
for(i=;i<n;i++)
{
scanf("%d%d",&list[i].x,&list[i].y);
}
Graham(n);
if(top!=n)
{
puts("I can't cut.");
continue;
}
cl(cost);
for(i=;i<n;i++)
for(j=i+;j<n;j++)
cost[i][j]=cost[j][i]=dis(list[i],list[j]);
for(i=;i<n;i++)
{
for(j=i;j<n;j++)dp[i][j]=INF;
dp[i][(i+)%n]=;
}
for(int len=;len<n;len++)
{
for(i=;i+len<=n-;i++)
{
j=i+len;
for(k=i+;k<=j-;k++)
{
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+cost[i][k]+cost[k][j]);
}
}
}
/*for(i=n-3;i>=0;i--)
{
for(j=i+2;j<n;j++)
{
for(k=i+1;k<=j-1;k++)
{
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+cost[i][k]+cost[k][j]);
}
}
}*/
printf("%d\n",dp[][n-]);
}
}
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
using namespace std;
#define MOD 1000000007
const int INF=0x3f3f3f3f;
const double eps=1e-;
typedef long long ll;
#define cl(a) memset(a,0,sizeof(a))
#define ts printf("*****\n");
const int MAXN=;
int n,m;
int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < )return -;
else return ;
}
struct Point
{
int x,y;
Point(){}
Point(double _x,double _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
//叉积
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
//点积
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
//绕原点旋转角度B(弧度值),后x,y的变化
};
Point list[MAXN];
int Stack[MAXN],top;
double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
}
//相对于list[0]的极角排序
bool _cmp(Point p1,Point p2)
{
double tmp=(p1-list[])^(p2-list[]);
if(sgn(tmp)>)return true;
else if(sgn(tmp)== && sgn(dist(p1,list[]) - dist(p2,list[])) <= )
return true;
else return false;
}
void Graham(int n)
{
Point p0;
int k=;
p0=list[];
//找最下边的一个点
for(int i=;i < n;i++)
{
if( (p0.y>list[i].y) || (p0.y==list[i].y && p0.x>list[i].x) )
{
p0=list[i];
k=i;
}
}
swap(list[k],list[]);
sort(list+,list+n,_cmp);
if(n==)
{
top=;
Stack[]=;
return;
}
if(n==)
{
top=;
Stack[]=;
Stack[]=;
return ;
}
Stack[]=;
Stack[]=;
top=;
for(int i=;i < n;i++)
{
while(top> && sgn((list[Stack[top-]]-list[Stack[top-]])^(list[i]-list[Stack[top-]])) <= )
top--;
Stack[top++]=i;
}
}
int cost[MAXN][MAXN];
int dis(Point p1,Point p2)//计算题目定义的cost
{
return abs(p1.x+p2.x)*abs(p1.y+p2.y)%m;
}
int dp[MAXN][MAXN];
int main()
{
int i,j,k;
#ifndef ONLINE_JUDGE
freopen("1.in","r",stdin);
#endif
while(~scanf("%d%d",&n,&m))
{
for(i=;i<n;i++)
{
scanf("%d%d",&list[i].x,&list[i].y);
}
Graham(n);
if(top!=n)
{
puts("I can't cut.");
continue;
}
cl(cost);
for(i=;i<n;i++)
for(j=i+;j<n;j++)
cost[i][j]=cost[j][i]=dis(list[i],list[j]);
for(i=;i<n;i++)
{
for(j=i;j<n;j++)dp[i][j]=INF;
dp[i][(i+)%n]=;
}
for(i=n-;i>=;i--)
{
for(j=i+;j<n;j++)
{
for(k=i+;k<=j-;k++)
{
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+cost[i][k]+cost[k][j]);
}
}
}
printf("%d\n",dp[][n-]);
}
}
zoj 3537 区间dp+计算几何的更多相关文章
- zoj 3469 区间dp **
题意:有一家快餐店送外卖,现在同时有n个家庭打进电话订购,送货员得以V-1的速度一家一家的运送,但是每一个家庭都有一个不开心的值,每分钟都会增加一倍,值达到一定程度,该家庭将不会再订购外卖了,现在为了 ...
- UVA-1331 Minimax Triangulation 区间dp 计算几何 三角剖分 最大三角形最小化
题目链接:https://cn.vjudge.net/problem/UVA-1331 题意 给一个任意多边形,把它分为多个三角形. 求某方案中最大的三角形是各方案中最小的面积的三角形面积. 思路 学 ...
- UVa 1331 - Minimax Triangulation(区间DP + 计算几何)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- ZOJ 3469 区间DP Food Delivery
题解 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm ...
- zoj 3537 Cake 区间DP (好题)
题意:切一个凸边行,如果不是凸包直接输出.然后输出最小代价的切割费用,把凸包都切割成三角形. 先判断是否是凸包,然后用三角形优化. dp[i][j]=min(dp[i][j],dp[i][k]+dp[ ...
- ZOJ 3537 Cake(凸包+区间DP)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3537 题目大意:给出一些点表示多边形顶点的位置,如果不是凸多边形 ...
- ZOJ 3537 Cake(凸包判定+区间DP)
Cake Time Limit: 1 Second Memory Limit: 32768 KB You want to hold a party. Here's a polygon-shaped c ...
- ZOJ 3537 Cake 求凸包 区间DP
题意:给出一些点表示多边形顶点的位置(如果多边形是凹多边形就不能切),切多边形时每次只能在顶点和顶点间切,每切一次都有相应的代价.现在已经给出计算代价的公式,问把多边形切成最多个不相交三角形的最小代价 ...
- [ZOJ]3541 Last Puzzle (区间DP)
ZOJ 3541 题目大意:有n个按钮,第i个按钮在按下ti 时间后回自动弹起,每个开关的位置是di,问什么策略按开关可以使所有的开关同时处于按下状态 Description There is one ...
随机推荐
- 利用正则表达式去除所有html标签,只保留文字
后台将富文本编辑器中的内容返回到前端时如果带上了标签,这时就可以利用这种方法只保留文字. 标签的格式有以下几种 1.<div class="test"></div ...
- 02 Go 1.2 Release Notes
Go 1.2 Release Notes Introduction to Go 1.2 Changes to the language Use of nil Three-index slices Ch ...
- mac idea内存溢出
VM options: -mx2048m -XX:MaxPermSize=2048m -Drebel.spring_plugin=true -Drebel.hibernate_plugin=true
- 在 SQL Server 2005 中配置数据库邮件
一. SQL Server发邮件原理和组件介绍: 数据库邮件有4个组件:配置文件.邮件处理组件.可执行文件以及“日志记录和审核组件”. l 配置组件包括: 1)数据库邮件帐户包 ...
- 关于django过滤器的使用
最近项目中要做分类筛选,其实已经做了这个功能,但是有一个字段是MultiSelectField类型,包含多个值,用户提交的数据是单个值,无法查询出结果, 所以用到了自定义过滤 原代码 class In ...
- IntelliJ IDEA 2018.2.2及以下版本破解方法
破解文件下载地址:https://pan.baidu.com/s/1FKeGekyIHFUWaWi6tk2eEw =========================================== ...
- Effective STL 学习笔记 32 ~ 33
Effective STL 学习笔记 32 ~ 33 */--> div.org-src-container { font-size: 85%; font-family: monospace; ...
- 20155225 2016-2017-2《Java程序设计》课程总结
20155225 2016-2017-2<Java程序设计>课程总结 每周作业链接汇总 预备作业1:新的开始 预备作业2:C语言学习回顾 预备作业3:Linux基础入门和虚拟机的安装 第一 ...
- SqlServer性能优化 Sql语句优化(十四)
一:在较小的结果集上上操作 1.仅返回需要的列 2.分页获取数据 EF实现分页: public object getcp(int skiprows,int currentpagerows) { HRU ...
- Newtonsoft.Json 序列化器的重写
public class TestConverter : JsonConverter { public override void WriteJson(JsonWriter writer, objec ...