如果有想学习状压\(dp\)的童鞋,请光临博客状压\(dp\)初学

互不侵犯

题目描述

在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。

注:数据有加强(2018/4/25)

输入输出格式

输入格式:

只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)

输出格式:

所得的方案数

输入输出样例

输入样例#1:

3 2

输出样例#1:

16

这道题是状压\(dp\)入门题的第二题,也就是说,不算很难。本蒟蒻做了一个小时

言归正传

我们设\(dp\)方程\(dp[i][j][k]\)表示第\(i\)行第\(j\)种状态\(k\)个国王,然后转移方程\(dp[i][j][k]+=dp[i-1][o][k-sum[j]]\)

那么我们怎么判断他们都互相不在攻击范围之内呢?那肯定就是一系列的位运算了。下面就不多说,代码写的很清楚了。

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;
int n,k;
long long dp[10][5000][1000],state[5000],tot,sum[5000];
void work_1(int he,int s,int node) {
long long p = 1<<n;
for(int i=0;i<p;i++)
if(!(i&(i<<1))){
state[++tot]=i;
sum[tot]=__builtin_popcount(i);
}
}
int main() {
scanf("%d%d",&n,&k);
work_1(0,0,0);
for(int i=1; i<=tot; i++)
dp[1][i][sum[i]]=1;
for(int i=2; i<=n; i++)
for(int j=1; j<=tot; j++)
for(int o=1; o<=tot; o++) {
if(state[j]&state[o]) continue;
if((state[j]<<1)&state[o])continue;
if(state[j]&(state[o]<<1))continue;
for(int s=sum[j];s<=k;s++)dp[i][j][s]+=dp[i-1][o][s-sum[j]];
}
long long ans=0;
for(int i=1; i<=tot; i++)
ans+=dp[n][i][k];
printf("%lld",ans);
}

互不侵犯_状压$dp$的更多相关文章

  1. 互不侵犯king (状压dp)

    互不侵犯king (状压dp) 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子.\(1\le n\ ...

  2. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  3. 【BZOJ1087】 [SCOI2005]互不侵犯King 状压DP

    经典状压DP. f[i][j][k]=sum(f[i-1][j-cnt[k]][k]); cnt[i]放置情况为i时的国王数量 前I行放置情况为k时国王数量为J #include <iostre ...

  4. [BZOJ1087] [SCOI2005] 互不侵犯King (状压dp)

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包 ...

  5. BZOJ 1087 [SCOI2005]互不侵犯King ——状压DP

    [题目分析] 沉迷水题,吃枣药丸. [代码] #include <cstdio> #include <cstring> #include <iostream> #i ...

  6. bzoj1087互不侵犯King——状压DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1087 水题... 然而犯了两个致命小错误,调了好半天...详见注释. 代码如下: #incl ...

  7. BZOJ-1087 互不侵犯King 状压DP+DFS预处理

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2337 Solved: 1366 [Submit][ ...

  8. bzoj1087 互不侵犯King 状压dp+bitset

    题目传送门 题目大意:中文题面. 思路:又是格子,n又只有9,所以肯定是状压dp,很明显上面一行的摆放位置会影响下一行,所以先预处理出怎样的二进制摆放法可以放在上下相邻的两行,这里推荐使用bitset ...

  9. BZOJ_1076_[SCOI2008]奖励关_状压DP

    BZOJ_1076_[SCOI2008]奖励关_状压DP 题意: 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛 ...

随机推荐

  1. Mysql数据库事务的隔离级别和锁的实现原理分析

    Mysql数据库事务的隔离级别和锁的实现原理分析 找到大神了:http://blog.csdn.net/tangkund3218/article/details/51753243 InnoDB使用MV ...

  2. Cocos2d-x 多点触摸

    多点触摸的实现步骤与单点触摸类似,setTouchEnabled(true)开启触摸功能,注冊触摸事件,重载多点触摸函数:ccTouchesBegan(開始).ccTouchesMoved(移动).c ...

  3. [LeetCOde][Java] Best Time to Buy and Sell Stock III

    题目: Say you have an array for which the ith element is the price of a given stock on day i. Design a ...

  4. JAVA设计模式之【代理模式】

    代理模式 通过代理对象间接访问 代购 客户端不想或者不能直接访问一个对象,可以通过一个称为代理的第三者来实现间接访问,该方案称为代理模式 角色 抽象主题角色Subject 声明真实主题类与代理类的公共 ...

  5. kafka 0.11 spark 2.11 streaming例子

    """ Counts words in UTF8 encoded, '\n' delimited text received from the network every ...

  6. nyoj--891--找点(贪心)

    找点 时间限制:2000 ms  |  内存限制:65535 KB 难度:2 描述 上数学课时,老师给了LYH一些闭区间,让他取尽量少的点,使得每个闭区间内至少有一个点.但是这几天LYH太忙了,你们帮 ...

  7. Oracle 11g AWR生成报告

    1.生成单实例 AWR 报告: @$ORACLE_HOME/rdbms/admin/awrrpt.sql 2.生成 Oracle RAC AWR 报告: @$ORACLE_HOME/rdbms/adm ...

  8. VC6.0 设置动态链接库工程生成dll以及lib文件的位置

    在"Projet"->"Settings..."的"Link"选项卡中 "Output file name"中设置 ...

  9. 关于Java集合的小抄--转

    原文地址:http://calvin1978.blogcn.com/articles/collection.html 在尽可能短的篇幅里,将所有集合与并发集合的特征.实现方式.性能捋一遍.适合所有&q ...

  10. C#语言基础之第一个C#程序

    1.在记事本中编写如下代码,保存为Simple.cs文件. using System; class Hello World{ public static void Main(){ Console.Wr ...