Tour

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)

Total Submission(s): 2299    Accepted Submission(s): 1151

Problem Description
In the kingdom of Henryy, there are N (2 <= N <= 200) cities, with M (M <= 30000) one-way roads connecting them. You are lucky enough to have a chance to have a tour in the kingdom. The route should be designed as: The route should contain one or more loops.
(A loop is a route like: A->B->……->P->A.)

Every city should be just in one route.

A loop should have at least two cities. In one route, each city should be visited just once. (The only exception is that the first and the last city should be the same and this city is visited twice.)

The total distance the N roads you have chosen should be minimized.
 
Input
An integer T in the first line indicates the number of the test cases.

In each test case, the first line contains two integers N and M, indicating the number of the cities and the one-way roads. Then M lines followed, each line has three integers U, V and W (0 < W <= 10000), indicating that there is a road from U to V, with the
distance of W.

It is guaranteed that at least one valid arrangement of the tour is existed.

A blank line is followed after each test case.
 
Output
For each test case, output a line with exactly one integer, which is the minimum total distance.
 
Sample Input
1
6 9
1 2 5
2 3 5
3 1 10
3 4 12
4 1 8
4 6 11
5 4 7
5 6 9
6 5 4
 
Sample Output
42
 

用费用流G++能够卡过,C++会超时。

用KM应该非常快吧,如今先刷费用流,过几天再好好做KM。

题意:给出n个点m条单向边边以及经过每条边的费用,让你求出走过一个哈密顿环(除起点外,每一个点仅仅能走一次)的最小费用。题目保证至少存在一个环满足条件,事实上推断成环仅仅须要推断是否满流就可以。

思路: 把每一个点i拆分成左点i和右点i+N

1。超级源点连左点。容量为1,费用为0

2。全部右点连超级汇点,容量为1。费用为0

3,每条单向边—— 起点左点 连 终点右点 容量为1,费用为边权。

最后跑一下费用流即可了。

注意重边的处理,不去重费用流会超时,还有要用G++提交。  抽出时间再补上KM的AC代码。

费用流AC代码:

#include <cstdio>
#include <cstring>
#include <queue>
#include <stack>
#include <vector>
#include <algorithm>
#define MAXN 400+10
#define MAXM 70000+10
#define INF 0x3f3f3f3f
using namespace std;
struct Edge
{
int from, to, cap, flow, cost, next;
};
Edge edge[MAXM];
int head[MAXN], edgenum;
int pre[MAXN], dist[MAXN];
bool vis[MAXN];
int N, M;
int source, sink;
void init()
{
edgenum = 0;
memset(head, -1, sizeof(head));
}
void addEdge(int u, int v, int w, int c)//必须去重!!! {
int i;
for(i = head[u]; i != -1; i = edge[i].next)
{
if(edge[i].to == v)
break;
}
if(i != -1)
{
if(edge[i].cost > c)
edge[i].cost = c, edge[i^1].cost = -c;
return ;
}
Edge E1 = {u, v, w, 0, c, head[u]};
edge[edgenum] = E1;
head[u] = edgenum++;
Edge E2 = {v, u, 0, 0, -c, head[v]};
edge[edgenum] = E2;
head[v] = edgenum++;
}
void getMap()
{
scanf("%d%d", &N, &M);
int a, b, c;
source = 0, sink = 2 * N + 1;
//把每一个点i拆分成左点i和右点i+N
//超级源点连左点。容量为1,费用为0
//全部右点连超级汇点。容量为1,费用为0
//单向边: 起点左点连终点右点 容量为1,费用为边权
for(int i = 1; i <= N; i++)
addEdge(source, i, 1, 0),
//addEdge(i, i + N, 1, 0),
addEdge(i + N, sink, 1, 0);
while(M--)
{
scanf("%d%d%d", &a, &b, &c);
addEdge(a, b+N, 1, c);
}
}
bool SPFA(int s, int t)
{
queue<int> Q;
memset(dist, INF, sizeof(dist));
memset(vis, false, sizeof(vis));
memset(pre, -1, sizeof(pre));
dist[s] = 0;
vis[s] = true;
Q.push(s);
while(!Q.empty())
{
int u = Q.front();
Q.pop();
vis[u] = false;
for(int i = head[u]; i != -1; i = edge[i].next)
{
Edge E = edge[i];
if(dist[E.to] > dist[u] + E.cost && E.cap > E.flow)
{
dist[E.to] = dist[u] + E.cost;
pre[E.to] = i;
if(!vis[E.to])
{
vis[E.to] = true;
Q.push(E.to);
}
}
}
}
return pre[t] != -1;
}
void MCMF(int s, int t, int &cost, int &flow)
{
flow = cost = 0;
while(SPFA(s, t))
{
int Min = INF;
for(int i = pre[t]; i != -1; i = pre[edge[i^1].to])
{
Edge E = edge[i];
Min = min(Min, E.cap - E.flow);
}
for(int i = pre[t]; i != -1; i = pre[edge[i^1].to])
{
edge[i].flow += Min;
edge[i^1].flow -= Min;
cost += edge[i].cost * Min;
}
flow += Min;
}
}
int main()
{
int t;
scanf("%d", &t);
while(t--)
{
init();
getMap();
int cost, flow;
MCMF(source, sink, cost, flow);
printf("%d\n", cost);
}
return 0;
}

KM算法:重刷

边权取负。注意重边的处理。

AC代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#define INF 0x3f3f3f3f
#define MAXN 210
using namespace std;
int lx[MAXN], ly[MAXN];
int Map[MAXN][MAXN];
bool visx[MAXN], visy[MAXN];
int slack[MAXN];
int match[MAXN];
int N, M;
void getMap()
{
for(int i = 1; i <= N; i++)
{
for(int j = 1; j <= N; j++)
Map[i][j] = -INF;
}
int a, b, c;
while(M--)
{
scanf("%d%d%d", &a, &b, &c);
if(-c > Map[a][b])
Map[a][b] = -c;
}
}
int DFS(int x)
{
visx[x] = true;
for(int y = 1; y <= N; y++)
{
if(visy[y]) continue;
int t = lx[x] + ly[y] - Map[x][y];
if(t == 0)
{
visy[y] = true;
if(match[y] == -1 || DFS(match[y]))
{
match[y] = x;
return 1;
}
}
else if(slack[y] > t)
slack[y] = t;
}
return 0;
}
void KM()
{
memset(match, -1, sizeof(match));
memset(ly, 0, sizeof(ly));
for(int x = 1; x <= N; x++)
{
lx[x] = -INF;
for(int y = 1; y <= N; y++)
lx[x] = max(lx[x], Map[x][y]);
}
for(int x = 1; x <= N; x++)
{
for(int i = 1; i <= N; i++)
slack[i] = INF;
while(1)
{
memset(visx, false, sizeof(visx));
memset(visy, false, sizeof(visy));
if(DFS(x)) break;
int d = INF;
for(int i = 1; i <= N; i++)
{
if(!visy[i] && slack[i] < d)
d = slack[i];
}
for(int i = 1; i <= N; i++)
{
if(visx[i])
lx[i] -= d;
}
for(int i = 1; i <= N; i++)
{
if(visy[i])
ly[i] += d;
else
slack[i] -= d;
}
}
}
int ans = 0;
for(int i = 1; i <= N; i++)
ans += Map[match[i]][i];
printf("%d\n", -ans);
}
int main()
{
int t;
scanf("%d", &t);
while(t--)
{
scanf("%d%d", &N, &M);
getMap();
KM();
}
return 0;
}

hdoj 3488 Tour 【最小费用最大流】【KM算法】的更多相关文章

  1. TZOJ 1513 Farm Tour(最小费用最大流)

    描述 When FJ's friends visit him on the farm, he likes to show them around. His farm comprises N (1 &l ...

  2. Farm Tour(最小费用最大流模板)

    Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18150   Accepted: 7023 Descri ...

  3. POJ2135 Farm Tour —— 最小费用最大流

    题目链接:http://poj.org/problem?id=2135 Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

  4. poj 2351 Farm Tour (最小费用最大流)

    Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 17230   Accepted: 6647 Descri ...

  5. poj 2135 Farm Tour 最小费用最大流建图跑最短路

    题目链接 题意:无向图有N(N <= 1000)个节点,M(M <= 10000)条边:从节点1走到节点N再从N走回来,图中不能走同一条边,且图中可能出现重边,问最短距离之和为多少? 思路 ...

  6. POJ 2135 Farm Tour [最小费用最大流]

    题意: 有n个点和m条边,让你从1出发到n再从n回到1,不要求所有点都要经过,但是每条边只能走一次.边是无向边. 问最短的行走距离多少. 一开始看这题还没搞费用流,后来搞了搞再回来看,想了想建图不是很 ...

  7. hdu 1853 Cyclic Tour 最小费用最大流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1853 There are N cities in our country, and M one-way ...

  8. [poj] 1235 Farm Tour || 最小费用最大流

    原题 费用流板子题. 费用流与最大流的区别就是把bfs改为spfa,dfs时把按deep搜索改成按最短路搜索即可 #include<cstdio> #include<queue> ...

  9. POJ-2516(最小费用最大流+MCMF算法)

    Minimum Cost POJ-2516 题意就是有n个商家,有m个供货商,然后有k种商品,题目求的是满足商家的最小花费供货方式. 对于每个种类的商品k,建立一个超级源点和一个超级汇点.每个商家和源 ...

  10. POJ-2195(最小费用最大流+MCMF算法)

    Going Home POJ-2195 这题使用的是最小费用流的模板. 建模的时候我的方法出现错误,导致出现WA,根据网上的建图方法没错. 这里的建图方法是每次到相邻点的最大容量为INF,而花费为1, ...

随机推荐

  1. hdu1429胜利大逃亡(bfs)

    胜利大逃亡(续) Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  2. Vue开发入门看这篇文章就够了

    摘要: 很多值得了解的细节. 原文:Vue开发看这篇文章就够了 作者:Random Fundebug经授权转载,版权归原作者所有. 介绍 Vue 中文网 Vue github Vue.js 是一套构建 ...

  3. Oracle_备份整库

    @echo off color 0b & cls echo echo 设置备份文件存放文件夹... echo set "tbuf=C:\OracleBackup" if n ...

  4. 【BZOJ4590】自动刷题机

    [思路分析] 比赛的时候想到了用二分+贪心,二分的部分与贪心的部分也写对了,但是由于数据范围未看没有开long long,且二分左端点赋值过小导致WA掉 正解:二分+贪心 二分代码的长度,贪心判断能否 ...

  5. CentOS7 搭建Kafka(二)kafka篇

    CentOS7 搭建Kafka(二)kafka篇 前面我们说了zookeeper的搭建,zookeeper运行后就可以着手搭建kafka了. 必看 喜欢官方文档的请移步:[http://kafka.a ...

  6. C - Domino piling

    Problem description You are given a rectangular board of M × N squares. Also you are given an unlimi ...

  7. html5与css3入门知识点精炼

    <meta name = "keywords" content="…………"/>(网页搜索时要输入的关键字) <meta name = &qu ...

  8. asp.net ajax 简单案例

    第一步先引用 scriptManager <asp:UpdatePanel ID="UpdatePanelGuanZhu" runat="server"& ...

  9. halcon 模板匹配 -- create_shape_model

    create_shape_model(Template : : //reduce_domain后的模板图像 NumLevels,//金字塔的层数,可设为“auto”或0—10的整数 AngleStar ...

  10. 【sqli-labs】 less23 Error based - strip comments (GET型基于错误的去除注释的注入)

    . 加单引号报错 加# http://localhost/sqli-labs-master/Less-23/?id=1'%23 错误没有改变,推测过滤了# 查看源码发现# -- 都被替换掉了 那么可用 ...