1. min_free_kbytes

先看官方解释:

This is used to force the Linux VM to keep a minimum number of kilobytes free. The VM uses this number to compute a watermark[WMARK_MIN] value for each lowmem zone in the system. Each lowmem zone gets a number of reserved free pages based proportionally on its size.

Some minimal amount of memory is needed to satisfy PF_MEMALLOC allocations; if you set this to lower than 1024KB, your system will become subtly broken, and prone to deadlock under high loads.

Setting this too high will OOM your machine instantly.

解释已经很清楚了,主要有以下几个关键点:

1. 代表系统所保留空闲内存的最低限。

在系统初始化时会根据内存大小计算一个默认值,计算规则是:

min_free_kbytes = sqrt(lowmem_kbytes * 16) = 4 * sqrt(lowmem_kbytes)(注:lowmem_kbytes即可认为是系统内存大小)

另外,计算出来的值有最小最大限制,最小为128K,最大为64M。

可以看出,min_free_kbytes随着内存的增大不是线性增长,comments里提到了原因“because network bandwidth does not increase linearly with machine size”。随着内存的增大,没有必要也线性的预留出过多的内存,能保证紧急时刻的使用量便足矣。

2.min_free_kbytes的主要用途是计算影响内存回收的三个参数 watermark[min/low/high]

  1. watermark[high] > watermark [low] > watermark[min],各个zone各一套

2)在系统空闲内存低于 watermark[low]时,开始启动内核线程kswapd进行内存回收(每个zone一个),直到该zone的空闲内存数量达到watermark[high]后停止回收。如果上层申请内存的速度太快,导致空闲内存降至watermark[min]后,内核就会进行direct reclaim(直接回收),即直接在应用程序的进程上下文中进行回收,再用回收上来的空闲页满足内存申请,因此实际会阻塞应用程序,带来一定的响应延迟,而且可能会触发系统OOM。这是因为watermark[min]以下的内存属于系统的自留内存,用以满足特殊使用,所以不会给用户态的普通申请来用。

3)三个watermark的计算方法:

watermark[min] = min_free_kbytes换算为page单位即可,假设为min_free_pages。(因为是每个zone各有一套watermark参数,实际计算效果是根据各个zone大小所占内存总大小的比例,而算出来的per zone min_free_pages)

watermark[low] = watermark[min] * 5 / 4

watermark[high] = watermark[min] * 3 / 2

所以中间的buffer量为 high - low = low - min = per_zone_min_free_pages * 1/4。因为min_free_kbytes = 4* sqrt(lowmem_kbytes),也可以看出中间的buffer量也是跟内存的增长速度成开方关系。

4)可以通过/proc/zoneinfo查看每个zone的watermark

例如:

Node 0, zone      DMA
pages free 3960
min 65
low 81
high 97

3.min_free_kbytes大小的影响

min_free_kbytes设的越大,watermark的线越高,同时三个线之间的buffer量也相应会增加。这意味着会较早的启动kswapd进行回收,且会回收上来较多的内存(直至watermark[high]才会停止),这会使得系统预留过多的空闲内存,从而在一定程度上降低了应用程序可使用的内存量。极端情况下设置min_free_kbytes接近内存大小时,留给应用程序的内存就会太少而可能会频繁地导致OOM的发生。

min_free_kbytes设的过小,则会导致系统预留内存过小。kswapd回收的过程中也会有少量的内存分配行为(会设上PF_MEMALLOC)标志,这个标志会允许kswapd使用预留内存;另外一种情况是被OOM选中杀死的进程在退出过程中,如果需要申请内存也可以使用预留部分。这两种情况下让他们使用预留内存可以避免系统进入deadlock状态。

2. lowmem_reserve_ratio

官方解释:

For some specialised workloads on highmem machines it is dangerous for the kernel to allow process memory to be allocated from the "lowmem" zone. This is because that memory could then be pinned via the mlock() system call, or by unavailability of swapspace.

And on large highmem machines this lack of reclaimable lowmem memory can be fatal.

So the Linux page allocator has a mechanism which prevents allocations which could use highmem from using too much lowmem. This means that a certain amount of lowmem is defended from the possibility of being captured into pinned user memory.

The `lowmem_reserve_ratio' tunable determines how aggressive the kernel is in defending these lower zones.

If you have a machine which uses highmem or ISA DMA and your applications are using mlock(), or if you are running with no swap then you probably should change the lowmem_reserve_ratio setting.

1.作用

除了min_free_kbytes会在每个zone上预留一部分内存外,lowmem_reserve_ratio是在各个zone之间进行一定的防卫预留,主要是防止高端zone在没内存的情况下过度使用低端zone的内存资源。

例如现在常见的一个node的机器有三个zone: DMA,DMA32和NORMAL。DMA和DMA32属于低端zone,内存也较小,如96G内存的机器两个zone总和才1G左右,NORMAL就相对属于高端内存(现在一般没有HIGH zone),而且数量较大(>90G)。低端内存有一定的特殊作用比如发生DMA时只能分配DMA zone的低端内存,因此需要在 尽量可以使用高端内存时 而 不使用低端内存,同时防止高端内存分配不足的时候抢占稀有的低端内存。

  1. 计算方法
cat /proc/sys/vm/lowmem_reserve_ratio
256 256 32

内核利用上述的protection数组计算每个zone的预留page量,计算出来也是数组形式,从/proc/zoneinfo里可以查看:

Node 0, zone      DMA
pages free 1355
min 3
low 3
high 4
:
:
numa_other 0
protection: (0, 2004, 2004, 2004)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
pagesets
cpu: 0 pcp: 0
:

在进行内存分配时,这些预留页数值和watermark相加来一起决定现在是满足分配请求,还是认为空闲内存量过低需要启动回收。

例如,如果一个normal区(index = 2)的页申请来试图分配DMA区的内存,且现在使用的判断标准是watermark[low]时,内核计算出 page_free = 1355,而watermark + protection[2] = 3 + 2004 = 2007 > page_free,则认为空闲内存太少而不予以分配。如果分配请求本就来自DMA zone,则 protection[0] = 0会被使用,而满足分配申请。

zone[i] 的 protection[j] 计算规则如下:

(i < j):
zone[i]->protection[j]
= (total sums of present_pages from zone[i+1] to zone[j] on the node)
/ lowmem_reserve_ratio[i];
(i = j):
(should not be protected. = 0;
(i > j):
(not necessary, but looks 0)

默认的 lowmem_reserve_ratio[i] 值是:

   256 (if zone[i] means DMA or DMA32 zone)
32 (others).

从上面的计算规则可以看出,预留内存值是ratio的倒数关系,如果是256则代表 1/256,即为 0.39% 的高端zone内存大小。

如果想要预留更多页,应该设更小一点的值,最小值是1(1/1 -> 100%)。

  1. 和min_free_kbytes(watermark)的配合示例

    下面是一段某线上服务器(96G)内存申请失败时打印出的log:
[38905.295014] java: page allocation failure. order:1, mode:0x20, zone 2
[38905.295020] Pid: 25174, comm: java Not tainted 2.6.32-220.23.1.tb750.el5.x86_64 #1
...
[38905.295348] active_anon:5730961 inactive_anon:216708 isolated_anon:0
[38905.295349] active_file:2251981 inactive_file:15562505 isolated_file:0
[38905.295350] unevictable:1256 dirty:790255 writeback:0 unstable:0
[38905.295351] free:113095 slab_reclaimable:577285 slab_unreclaimable:31941
[38905.295352] mapped:7816 shmem:4 pagetables:13911 bounce:0
[38905.295355] Node 0 DMA free:15796kB min:4kB low:4kB high:4kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:15332kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? yes
[38905.295365] lowmem_reserve[]: 0 1951 96891 96891
[38905.295369] Node 0 DMA32 free:380032kB min:800kB low:1000kB high:1200kB active_anon:46056kB inactive_anon:10876kB active_file:15968kB inactive_file:129772kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:1998016kB mlocked:0kB dirty:20416kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:11716kB slab_unreclaimable:160kB kernel_stack:176kB pagetables:112kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:576 all_unreclaimable? no
[38905.295379] lowmem_reserve[]: 0 0 94940 94940
[38905.295383] Node 0 Normal free:56552kB min:39032kB low:48788kB high:58548kB active_anon:22877788kB inactive_anon:855956kB active_file:8991956kB inactive_file:62120248kB unevictable:5024kB isolated(anon):0kB isolated(file):0kB present:97218560kB mlocked:5024kB dirty:3140604kB writeback:0kB mapped:31264kB shmem:16kB slab_reclaimable:2297424kB slab_unreclaimable:127604kB kernel_stack:12528kB pagetables:55532kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no
[38905.295393] lowmem_reserve[]: 0 0 0 0
[38905.295396] Node 0 DMA: 1*4kB 2*8kB 0*16kB 1*32kB 2*64kB 0*128kB 1*256kB 0*512kB 1*1024kB 1*2048kB 3*4096kB = 15796kB
[38905.295405] Node 0 DMA32: 130*4kB 65*8kB 75*16kB 72*32kB 95*64kB 22*128kB 10*256kB 7*512kB 4*1024kB 2*2048kB 86*4096kB = 380032kB
[38905.295414] Node 0 Normal: 12544*4kB 68*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 1*4096kB = 54816kB
[38905.295423] 17816926 total pagecache pages

1)从第一行log“order:1, mode:0x20”可以看出来是GFP_ATOMIC类型的申请,且order = 1(page = 2 )

2)第一次内存申请尝试

在__alloc_pages_nodemask()里,首先调用 get_page_from_freelist() 尝试第一次申请,使用的标志位是 ALLOC_WMARK_LOW|ALLOC_CPUSET,它会对每个zone都做 zone_watermark_ok()的检查,使用的就是传进的watermark[low]阈值。

在zone_watermark_ok()里会考虑z->lowmem_reserve[],导致在normal上的申请不会落到低端zone。比如对于DMA32:

free pages = 380032KB = 95008 pages < low(1000KB = 250 pages) + lowmem_reservenormal = 95190

所以就认为DMA32也不平不ok,同理更用不了DMA的内存。

而对于normal自己内存来说,free pages = 56552 KB = 14138 pages,也不用考虑lowmem_reserve(0),但这时还会考虑申请order(1),减去order 0的12544个page后只剩 14138 - 12544 = 1594,也小于 low / 2 = (48788KB=12197pages) / 2 = 6098 pages。

所以初次申请尝试失败,进入__alloc_pages_slowpath() 尝试进行更为积极一些的申请。

3)第二次内存申请尝试

__alloc_pages_slowpath()首先是通过 gfp_to_alloc_flags() 修改alloc_pages,设上更为强硬的标志位。这块根据原来的GFP_ATOMIC会设上 ALLOC_WMARK_MIN | ALLOC_HARDER | ALLOC_HIGH。但注意的是不会设上 ALLOC_NO_WATERMARKS 标志位。这个标志位不再判断zone的水位限制,属于优先级最高的申请,可以动用所有的reserve内存,但条件是(!in_interrupt() && ((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))),即要求不能在中断上下文,且是正在进行回收(例如kswapd)或者正在退出的进程。

之后进入拿着新的alloc_pages重新进入get_page_from_pagelist() 尝试第二次申请,虽然有了 ALLOC_HARDER和ALLOC_HIGH,但是不幸的是在3个zone的zone_watermark_ok检查中还是都无法通过,例如对于DMA32:

free pages = 380032KB = 95008 pages

因为设上了ALLOC_HIGH 所以会将得到的watermark[min]减半,即min = min/2 = 800K / 2 = 400K = 100pages

而又因为设上了ALLOC_HARDER,会再将min砍去1/4,即min = 3 * min / 4 = 100 pages * 3 / 4 = 75 pages

即便如此,min(75 pages) + lowmem_reservenormal = 95015,仍大于free pages,仍认为无法分配内存,同理DMA也不不成功,而normal中 free pages里连续8K的页太少也无法满足分配

第二次失败后,由于没有ALLOC_NO_WATERMARK也不会进入__alloc_pages_high_priority 进行最高优先级的申请,同时由于是GFP_ATOMIC类型的分配不能阻塞回收或者进入OOM,因此就以申请失败告终。

遇到此种情况可以适当调高 min_free_kbytes 使kswapd较早启动回收,使系统一直留有较多的空闲内存,同时可以适度降低 lowmem_reserve_ratio(可选),使得内存不足的情况下(主要是normal zone)可以借用DMA32/DMA的内存救急(注意不能也不能过低)。

[kernel]----理解kswapd的低水位min_free_kbytes的更多相关文章

  1. [Kernel]理解System call系统调用

    转自:http://os.51cto.com/art/200512/13510.htm 现在,您或许正在查看设备驱动程序,并感到奇怪:“函数 foo_read() 是如何被调用的?”或者可能疑惑: “ ...

  2. Linux中的Buffer Cache和Page Cache echo 3 > /proc/sys/vm/drop_caches Slab内存管理机制 SLUB内存管理机制

    Linux中的Buffer Cache和Page Cache echo 3 > /proc/sys/vm/drop_caches   Slab内存管理机制 SLUB内存管理机制 http://w ...

  3. OceanBase数据库实践入门——手动搭建OceanBase集群

    前言 目前有关OceanBase功能.案例.故事的文章已经很多,对OceanBase感兴趣的朋友都想安装一个数据库试试.本文就是分享初学者如何手动搭建一个OceanBase集群.这也是学习理解Ocea ...

  4. MIT 6.828 Lab 1/ Part 2

    Exercise 03 - obj/boot/boot.asm 反汇编文件 截取asm部分文件并注释理解 # Set up the important data segment registers ( ...

  5. 关于uboot和kernel的一些理解

    经过多次的修改和实验,终于能够在mini2440开发板上进行各种uboot和kernel的挂载实验了,在此期间学习到了很多知识,也理解了一些知识1->分区uboot和kernel的分区表要一致u ...

  6. weighted Kernel k-means 加权核k均值算法理解及其实现(一)

    那就从k-means开始吧 对于机器学习的新手小白来说,k-means算法应该都会接触到吧.传统的k-means算法是一个硬聚类(因为要指定k这个参数啦)算法.这里利用百度的解释 它是数据点到原型的某 ...

  7. 从基本理解到深入探究 Linux kernel 通知链(notifier chain)【转】

    转自:https://blog.csdn.net/u014134180/article/details/86563754 版权声明:本文为博主原创文章,未经博主允许不得转载.——Wu_Being ht ...

  8. shell与kernel的理解 转载

    Shell 的英文释义是外壳,与 kernel 内核名词遥相呼应,一外一内,一壳一核.内核就像瑞士银行的金库,存放着客户的黄金等众多的(硬件)资产,闲杂人等(包括客户)当然是严格禁止入内的,而作为客户 ...

  9. linux 的swap、swappiness及kswapd原理【转】

    本文讨论的 swap基于Linux4.4内核代码 .Linux内存管理是一套非常复杂的系统,而swap只是其中一个很小的处理逻辑. 希望本文能让读者了解Linux对swap的使用大概是什么样子.阅读完 ...

随机推荐

  1. Myeclipse中解决spring配置文件无提示问题

    相信非常多人都遇到过在部署spring框架写spring的配置文件时无提示内容的问题,都是仅仅能提示一些标签 名,而无法提示属性值,bz我本人今天也遇到了这种问题.在网上找了非常久答案,非常多方法都不 ...

  2. DM8168 IPNC Boa移植

    1.交叉编译openssL 下载openssL-1.0.0.tar.gz在虚拟机下进行交叉编译,生成libcrypto.a及libssl.a.将这两个文件复制到DVRRDK_03.00.00.00/b ...

  3. Android系统升级那些事儿【转】

    本文转载自:http://blog.csdn.net/chenyufei1013/article/details/12705719 版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?) ...

  4. 背包问题的方案总数 P1474 货币系统

    背包问题的方案总数 对于一个给定了背包容量.物品费用.物品间相互关系(分组.依赖等)的背包问题,除了再给定每个物品的价值后求可得到的最大价值外,还可以得到装满背包或将背包装至某一指定容量的方案总数. ...

  5. hdoj--1418--抱歉(水题)

     抱歉 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Subm ...

  6. C Looooops(扩展欧几里得+模线性方程)

    http://poj.org/problem?id=2115 题意:给出A,B,C和k(k表示变量是在k位机下的无符号整数),判断循环次数,不能终止输出"FOREVER". 即转化 ...

  7. 关于我们ajax异步请求的方法与知识

      做前端开发的朋友对于ajax异步更新一定印象深刻,作为刚入坑的小白,今天就和大家一起聊聊关于ajax异步请求的那点事.既然是ajax就少不了jQuery的知识,推荐大家访问www.w3school ...

  8. Appium + python -小程序实例

    from appium import webdriverfrom appium.webdriver.common.touch_action import TouchActionfrom time im ...

  9. 引入外部CSS的两种方式及区别

    1.CSS的两种引入方式 通过@import指令引入 @import指令是CSS语言的一部分,使用时把这个指令添加到HTML的一个<style>标签中: 要与外部的CSS文件关联起来,得使 ...

  10. Android PopWindow的替代品BasePopup

    版权声明:本文为xing_star原创文章,转载请注明出处! 本文同步自http://javaexception.com/archives/109 背景描述 最近一段时间,又看到了这个开源项目Base ...