1005: [HNOI2008]明明的烦恼

题目:传送门

题解:

   毒瘤题啊天~

   其实思考的过程还是比较简单的。。。

   首先当然还是要了解好prufer序列的基本性质啦

   那么和1211大体一致,主要还是利用组合数学:

   首先我们把度数和-n记录为sum,那么根据prufer序列,序列的元素个数就是n-2

   那就是要在n-2个位置中选sum个,然后就是分别根据度数要求算每个元素在sum个位置中的方案,然后乘起来。最后还要乘上没有度数要求的元素的方案数就...ok啦

   思考两分钟...代码两小时...太菜啦!!!!

代码:

 #include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#define qread(x) x=read()
using namespace std;
inline int read()
{
int f=,x=;char ch;
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return f*x;
}
struct node
{
int len,a[];
node(){memset(a,,sizeof(a));}
}no,n1;
void chengfa(int x)
{
int i;
for(i=;i<=no.len;i++)no.a[i]=no.a[i]*x;
for(i=;i<=no.len;i++)
{
no.a[i+]+=no.a[i]/;
no.a[i]%=;
}
i=no.len;
while(no.a[i+]>)
{
i++;
no.a[i+]+=no.a[i]/;
no.a[i]%=;
}
no.len=i;
while(no.a[no.len]== && no.len>)no.len--;
}
bool pd(int x)
{
if(x<)return false;
double t=sqrt(double(x+));
for(int i=;i<=t;i++)
if(x%i==)
return false;
return true;
}
int n,d[],pr[],s[];
int main()
{
scanf("%d",&n);int cnt=,sum=;
if(n==){qread(d[]);if(d[]){printf("0\n");return ;}else {printf("1\n");return ;}}
for(int i=;i<=n;i++)
{
qread(d[i]);
if(d[i]==){printf("0\n");}
if(d[i]==-)cnt++;
else d[i]-=,sum+=d[i];
}
if(sum>n-){printf("0\n");return ;}
if(sum<n- && cnt==){printf("0\n");return ;}
int len=;
for(int i=;i<=n;i++)if(pd(i))pr[++len]=i;
for(int i=;i<=n-;i++)
{
int x=i;
for(int j=;j<=len;j++)
while(x%pr[j]== && x!=)
s[j]++,x/=pr[j];
}
for(int i=;i<=n--sum;i++)
{
int x=i;
for(int j=;j<=len;j++)
while(x%pr[j]== && x!=)
s[j]--,x/=pr[j];
}
for(int i=;i<=n;i++)
if(d[i]>)
{
for(int k=;k<=d[i];k++)
{
int x=k;
for(int j=;j<=len;j++)
while(x%pr[j]== && x!=)
s[j]--,x/=pr[j];
}
}
no.a[]=;no.len=;
for(int i=;i<=len;i++)
while(s[i]--)
chengfa(pr[i]);
for(int i=;i<=n--sum;i++)chengfa(cnt);
for(int i=no.len;i>=;i--)
printf("%d",no.a[i]);
printf("\n");
return ;
}

  

bzoj1005: [HNOI2008]明明的烦恼(prufer+高精度)的更多相关文章

  1. [bzoj1005][HNOI2008]明明的烦恼-Prufer编码+高精度

    Brief Description 给出标号为1到N的点,以及某些点最终的度数,允许在 任意两点间连线,可产生多少棵度数满足要求的树? Algorithm Design 结论题. 首先可以参考这篇文章 ...

  2. [BZOJ1005] [HNOI2008] 明明的烦恼 (prufer编码)

    Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N ...

  3. bzoj1005: [HNOI2008]明明的烦恼 prufer序列

    https://www.lydsy.com/JudgeOnline/problem.php?id=1005 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的 ...

  4. BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5786  Solved: 2263[Submit][Stat ...

  5. bzoj1005 [HNOI2008]明明的烦恼

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3032  Solved: 1209 Description ...

  6. bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2248  Solved: 898[Submit][Statu ...

  7. BZOJ 1005: [HNOI2008]明明的烦恼( 组合数学 + 高精度 )

    首先要知道一种prufer数列的东西...一个prufer数列和一颗树对应..然后树上一个点的度数-1是这个点在prufer数列中出现次数..这样就转成一个排列组合的问题了.算个可重集的排列数和组合数 ...

  8. bzoj 1005 [HNOI2008] 明明的烦恼 (prufer编码)

    [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5907  Solved: 2305[Submit][Status][Di ...

  9. BZOJ1005 HNOI2008明明的烦恼(prufer+高精度)

    每个点的度数=prufer序列中的出现次数+1,所以即每次选一些位置放上某个点,答案即一堆组合数相乘.记一下每个因子的贡献分解一下质因数高精度乘起来即可. #include<iostream&g ...

随机推荐

  1. C#-入门思维导图

    C#-入门思维导图 百度云盘 链接:http://pan.baidu.com/s/1jI5zMS2 密码:0ypc 如有错误,请告知我

  2. Bmob移动后端云服务平台--Android从零開始--(二)android高速入门

    Bmob移动后端云服务平台--Android从零開始--(二)android高速入门 上一篇博文我们简介何为Bmob移动后端服务平台,以及其相关功能和优势. 本文将利用Bmob高速实现简单样例,进一步 ...

  3. linux修改history记录数

    在linux系统下.history命令会保存多少条命令呢?曾在一本书上说,如果注销系统,那么会将所有的历史命令都定入到~/.bash_history, 但只保留1000条命令(这个是由默认的shell ...

  4. IMP-00010: 不是有效的导出文件,标题验证失败

    IMP-00010: 不是有效的导出文件,标题验证失败 IMP-00000: 未成功终止导入   在google上查找了一下,大概有两种情况: 1.imp/exp的版本不对,也就是说低版本的导出,可以 ...

  5. 详解JSP九个内置对象

    [JSP]☆★之详解九个内置对象       在web开发中,为方便开发者,JSP定义了一些由JSP容器实现和管理的内置对象,这些对象可以直接被开发者使用,而不需要再对其进行实例化!本文详解,JSP2 ...

  6. 51nod 1632 B君的连通

    题目: 这题看起来难,其实这么多概率啥的都是唬人的.甚至连快速幂都不用就可以解. 解法:    n个节点,n-1条边,期望会有一半的边被炸毁(因为总体概率就是50%). 即(n-1)/2条边被炸毁,这 ...

  7. 【原创】如何使用一句SQL计算工作日天数?

    现在有这样一个需求,要求计算两个日期间的工作日天数,要求除去节假日,其中节假日有一张配置表,具体的格式如下: 开始日期 结束日期 节假日类型 节假日名称 2013-08-10 2013-08-12   ...

  8. php创建图像具体步骤

    php 的图像处理在验证码是最常见的,下面说下使用php创建图像的具体步骤. 简要说明:PHP 并不仅限于创建 HTML 输出, 它也可以创建和处理包括 GIF, PNG(推荐), JPEG, WBM ...

  9. passwd文件

    1.查看/etc/passwd [admin@localhost /]$ cat -n /etc/passwd 1 root:x:0:0:root:/root:/bin/bash 2 bin:x:1: ...

  10. python中的json

    import json# dumps #一般处理字符串# dump #一般处理文件 #字符串和json之间的转换test_dict={"name":"fxh", ...