tensorboard 作为一款可视化神器,可以说是学习tensorflow时模型训练以及参数可视化的法宝。

而在训练过程中,主要用到了tf.summary()的各类方法,能够保存训练过程以及参数分布图并在tensorboard显示。

tf.summary有诸多函数:

1、tf.summary.scalar

用来显示标量信息,其格式为:

tf.summary.scalar(tags, values, collections=None, name=None)

例如:tf.summary.scalar('mean', mean)

一般在画loss,accuary时会用到这个函数。

2、tf.summary.histogram

用来显示直方图信息,其格式为:

tf.summary.histogram(tags, values, collections=None, name=None) 
例如: tf.summary.histogram('histogram', var)
一般用来显示训练过程中变量的分布情况
3、tf.summary.distribution
分布图,一般用于显示weights分布
4、tf.summary.text

可以将文本类型的数据转换为tensor写入summary中:

例如:

text = """/a/b/c\\_d/f\\_g\\_h\\_2017"""
summary_op0 = tf.summary.text('text', tf.convert_to_tensor(text))

5、tf.summary.image

输出带图像的probuf,汇总数据的图像的的形式如下: ' tag /image/0', ' tag /image/1'...,如:input/image/0等。

格式:tf.summary.image(tag, tensor, max_images=3, collections=None, name=Non

6、tf.summary.audio

展示训练过程中记录的音频

7、tf.summary.merge_all

merge_all 可以将所有summary全部保存到磁盘,以便tensorboard显示。如果没有特殊要求,一般用这一句就可一显示训练时的各种信息了。

格式:tf.summaries.merge_all(key='summaries')

8、tf.summary.FileWriter

指定一个文件用来保存图。

格式:tf.summary.FileWritter(path,sess.graph)

可以调用其add_summary()方法将训练过程数据保存在filewriter指定的文件中

Tensorflow Summary 用法示例:

tf.summary.scalar('accuracy',acc)                   #生成准确率标量图
merge_summary = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(dir,sess.graph)#定义一个写入summary的目标文件,dir为写入文件地址
......(交叉熵、优化器等定义)
for step in xrange(training_step): #训练循环
train_summary = sess.run(merge_summary,feed_dict = {...})#调用sess.run运行图,生成一步的训练过程数据
train_writer.add_summary(train_summary,step)#调用train_writer的add_summary方法将训练过程以及训练步数保存

此时开启tensorborad:

  1. tensorboard --logdir=/summary_dir

便能看见accuracy曲线了。

另外,如果我不想保存所有定义的summary信息,也可以用tf.summary.merge方法有选择性地保存信息:

9、tf.summary.merge

格式:tf.summary.merge(inputs, collections=None, name=None)

一般选择要保存的信息还需要用到tf.get_collection()函数

示例:

tf.summary.scalar('accuracy',acc)                   #生成准确率标量图
merge_summary = tf.summary.merge([tf.get_collection(tf.GraphKeys.SUMMARIES,'accuracy'),...(其他要显示的信息)])
train_writer = tf.summary.FileWriter(dir,sess.graph)#定义一个写入summary的目标文件,dir为写入文件地址
......(交叉熵、优化器等定义)
for step in xrange(training_step): #训练循环
train_summary = sess.run(merge_summary,feed_dict = {...})#调用sess.run运行图,生成一步的训练过程数据
train_writer.add_summary(train_summary,step)#调用train_writer的add_summary方法将训练过程以及训练步数保存

使用tf.get_collection函数筛选图中summary信息中的accuracy信息,这里的

tf.GraphKeys.SUMMARIES  是summary在collection中的标志。

当然,也可以直接:

acc_summary = tf.summary.scalar('accuracy',acc)                   #生成准确率标量图
merge_summary = tf.summary.merge([acc_summary ,...(其他要显示的信息)]) #这里的[]不可省

如果要在tensorboard中画多个数据图,需定义多个tf.summary.FileWriter并重复上述过程。

参考文献:https://www.cnblogs.com/lyc-seu/p/8647792.html

Tensorflow学习笔记——Summary用法的更多相关文章

  1. Tensorflow学习笔记2019.01.03

    tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...

  2. tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)

    续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...

  3. Tensorflow学习笔记No.7

    tf.data与自定义训练综合实例 使用tf.data自定义猫狗数据集,并使用自定义训练实现猫狗数据集的分类. 1.使用tf.data创建自定义数据集 我们使用kaggle上的猫狗数据以及tf.dat ...

  4. Tensorflow学习笔记No.10

    多输出模型 使用函数式API构建多输出模型完成多标签分类任务. 数据集下载链接:https://pan.baidu.com/s/1JtKt7KCR2lEqAirjIXzvgg 提取码:2kbc 1.读 ...

  5. Tensorflow学习笔记2:About Session, Graph, Operation and Tensor

    简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节 ...

  6. Object C学习笔记22-#define 用法

    上一篇讲到了typedef 关键字的使用,可以参考文章 Object C 学习笔记--typedef用法 .而在c中还有另外一个很重要的关键字#define. 一. #define 简介 在C中利用预 ...

  7. Tensorflow学习笔记2019.01.22

    tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...

  8. TensorFlow学习笔记之--[compute_gradients和apply_gradients原理浅析]

    I optimizer.minimize(loss, var_list) 我们都知道,TensorFlow为我们提供了丰富的优化函数,例如GradientDescentOptimizer.这个方法会自 ...

  9. 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识

    深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...

随机推荐

  1. POJ 1811 Prime Test( Pollard-rho整数分解经典题 )

    链接:传送门 题意:输入 n ,判断 n 是否为素数,如果是合数输出 n 的最素因子 思路:Pollard-rho经典题 /************************************** ...

  2. 3.3、Ansible命令参数详解

    0.ansible 命令参数详解: [root@localhost ~]# ansible Usage: ansible <host-pattern> [options] Options: ...

  3. ubuntu系统自动配置开机启动脚本

    以前一直搞的centos配置开机启动脚本,但是相同方法用在ubuntu系统上就不管用了,非常伤脑筋. 非常感谢  https://www.linuxidc.com/Linux/2017-09/1471 ...

  4. [using_microsoft_infopath_2010]Chapter7 从SharePoint列表和商业连通服务取数据

    本章概要: 1.SharePoint2010列表作为数据源 2.从SharePoint中集中的数据连接库维护数据中获益 3.配置使用外部的项目选择器控件和商业联通服务从外部系统增加信息到你的表单中

  5. 用 query 方法 获得xml 节点的值

    DECLARE @result xml SET @result='<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelo ...

  6. Android系统编译【转】

    本文转载自;http://blog.csdn.net/zirconsdu/article/details/8005415 Android编译系统分析 概要 由于android编译系统的复杂和使用了不熟 ...

  7. 【转】iOS 设置APP的名称(浅述APP版本国际化与本地化)

    原文网址:http://www.jianshu.com/p/a3a70f0398c4 前言 App的名字设置方式有很多种,如果在App打包上线时不做修改,最终App的名字就是Xcode在建立工程时的名 ...

  8. Neo4j沙盒实验申请过程步骤(图文详解)

    不多说,直接上干货! 参考博客 http://blog.csdn.net/u012318074/article/details/72793632    (对此表示感谢) 前期博客 我暂时是将Neo4j ...

  9. layui序章

    layui,layer,laydate关系图,layer和laydate作为layui的独立模块存在 下载地址:layer.layui.com

  10. Activity禁止截屏代码

    getWindow().addFlags(WindowManager.LayoutParams.FLAG_SECURE);