tensorboard 作为一款可视化神器,可以说是学习tensorflow时模型训练以及参数可视化的法宝。

而在训练过程中,主要用到了tf.summary()的各类方法,能够保存训练过程以及参数分布图并在tensorboard显示。

tf.summary有诸多函数:

1、tf.summary.scalar

用来显示标量信息,其格式为:

tf.summary.scalar(tags, values, collections=None, name=None)

例如:tf.summary.scalar('mean', mean)

一般在画loss,accuary时会用到这个函数。

2、tf.summary.histogram

用来显示直方图信息,其格式为:

tf.summary.histogram(tags, values, collections=None, name=None) 
例如: tf.summary.histogram('histogram', var)
一般用来显示训练过程中变量的分布情况
3、tf.summary.distribution
分布图,一般用于显示weights分布
4、tf.summary.text

可以将文本类型的数据转换为tensor写入summary中:

例如:

text = """/a/b/c\\_d/f\\_g\\_h\\_2017"""
summary_op0 = tf.summary.text('text', tf.convert_to_tensor(text))

5、tf.summary.image

输出带图像的probuf,汇总数据的图像的的形式如下: ' tag /image/0', ' tag /image/1'...,如:input/image/0等。

格式:tf.summary.image(tag, tensor, max_images=3, collections=None, name=Non

6、tf.summary.audio

展示训练过程中记录的音频

7、tf.summary.merge_all

merge_all 可以将所有summary全部保存到磁盘,以便tensorboard显示。如果没有特殊要求,一般用这一句就可一显示训练时的各种信息了。

格式:tf.summaries.merge_all(key='summaries')

8、tf.summary.FileWriter

指定一个文件用来保存图。

格式:tf.summary.FileWritter(path,sess.graph)

可以调用其add_summary()方法将训练过程数据保存在filewriter指定的文件中

Tensorflow Summary 用法示例:

tf.summary.scalar('accuracy',acc)                   #生成准确率标量图
merge_summary = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(dir,sess.graph)#定义一个写入summary的目标文件,dir为写入文件地址
......(交叉熵、优化器等定义)
for step in xrange(training_step): #训练循环
train_summary = sess.run(merge_summary,feed_dict = {...})#调用sess.run运行图,生成一步的训练过程数据
train_writer.add_summary(train_summary,step)#调用train_writer的add_summary方法将训练过程以及训练步数保存

此时开启tensorborad:

  1. tensorboard --logdir=/summary_dir

便能看见accuracy曲线了。

另外,如果我不想保存所有定义的summary信息,也可以用tf.summary.merge方法有选择性地保存信息:

9、tf.summary.merge

格式:tf.summary.merge(inputs, collections=None, name=None)

一般选择要保存的信息还需要用到tf.get_collection()函数

示例:

tf.summary.scalar('accuracy',acc)                   #生成准确率标量图
merge_summary = tf.summary.merge([tf.get_collection(tf.GraphKeys.SUMMARIES,'accuracy'),...(其他要显示的信息)])
train_writer = tf.summary.FileWriter(dir,sess.graph)#定义一个写入summary的目标文件,dir为写入文件地址
......(交叉熵、优化器等定义)
for step in xrange(training_step): #训练循环
train_summary = sess.run(merge_summary,feed_dict = {...})#调用sess.run运行图,生成一步的训练过程数据
train_writer.add_summary(train_summary,step)#调用train_writer的add_summary方法将训练过程以及训练步数保存

使用tf.get_collection函数筛选图中summary信息中的accuracy信息,这里的

tf.GraphKeys.SUMMARIES  是summary在collection中的标志。

当然,也可以直接:

acc_summary = tf.summary.scalar('accuracy',acc)                   #生成准确率标量图
merge_summary = tf.summary.merge([acc_summary ,...(其他要显示的信息)]) #这里的[]不可省

如果要在tensorboard中画多个数据图,需定义多个tf.summary.FileWriter并重复上述过程。

参考文献:https://www.cnblogs.com/lyc-seu/p/8647792.html

Tensorflow学习笔记——Summary用法的更多相关文章

  1. Tensorflow学习笔记2019.01.03

    tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...

  2. tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)

    续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...

  3. Tensorflow学习笔记No.7

    tf.data与自定义训练综合实例 使用tf.data自定义猫狗数据集,并使用自定义训练实现猫狗数据集的分类. 1.使用tf.data创建自定义数据集 我们使用kaggle上的猫狗数据以及tf.dat ...

  4. Tensorflow学习笔记No.10

    多输出模型 使用函数式API构建多输出模型完成多标签分类任务. 数据集下载链接:https://pan.baidu.com/s/1JtKt7KCR2lEqAirjIXzvgg 提取码:2kbc 1.读 ...

  5. Tensorflow学习笔记2:About Session, Graph, Operation and Tensor

    简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节 ...

  6. Object C学习笔记22-#define 用法

    上一篇讲到了typedef 关键字的使用,可以参考文章 Object C 学习笔记--typedef用法 .而在c中还有另外一个很重要的关键字#define. 一. #define 简介 在C中利用预 ...

  7. Tensorflow学习笔记2019.01.22

    tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...

  8. TensorFlow学习笔记之--[compute_gradients和apply_gradients原理浅析]

    I optimizer.minimize(loss, var_list) 我们都知道,TensorFlow为我们提供了丰富的优化函数,例如GradientDescentOptimizer.这个方法会自 ...

  9. 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识

    深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...

随机推荐

  1. JavaScript JSON简单操作(增删改)

    JavaScript 中对json处理: 声明;: var json={};或 json={"name":"asd","age":24}; ...

  2. [JoyOI] 1035 棋盘覆盖 (二分图匹配)

    题目描述 给出一张nn(n<=100)的国际象棋棋盘,其中被删除了一些点,问可以使用多少12的多米诺骨牌进行掩盖. 输入格式 第一行为n,m(表示有m个删除的格子) 第二行到m+1行为x,y,分 ...

  3. MYSQL: sql中某一个字段内容为用逗号分割的字符串转换成多条数据

    场景: 表名:testsuer id     name 1       小红,小李,李红,小法 要结果值为: 1     小红 1     小李 1     李红 1     小法 MYSQL函数解释 ...

  4. 01.Python基础-5.函数

    1 函数的介绍 函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 内置函数 自定义函数 2 函数的定义和调用 2.1 函数的定义和调用 定义 def 函数名([参数]): 代码块 [ ...

  5. 通过腾讯地图api获取用户位置限制在指定位置区域

    <!--在微信中获取用户位置--><script src="http://res.wx.qq.com/open/js/jweixin-1.0.0.js">& ...

  6. SpringBoot 对静态资源的映射规则

    一.所有 /webjars/** ,都去 classpath:/META-INF/resources/webjars/ 找资源 webjars:以jar包的方式引入静态资源,如下:引入 jquery ...

  7. 百度url 参数详解全

    百度url解析Joe.Smith整理大全 百度url解析Joe.Smith整理大全...1 本文链接:http://blog.csdn.net/qq_26816591/article/details/ ...

  8. 【C++ Primer每日刷】之三 标准库 string 类型

    标准库 string 类型 string 类型支持长度可变的字符串.C++ 标准库将负责管理与存储字符相关的内存,以及提供各种实用的操作.标准库string 类型的目的就是满足对字符串的一般应用. 与 ...

  9. BZOJ 4027: [HEOI2015]兔子与樱花 贪心

    4027: [HEOI2015]兔子与樱花 Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号 ...

  10. Swift String转Character数组

    通过String的characters方法,将String转Character数组 例如: let characters:Array<Character> = Array("01 ...