[HNOI2008]水平可见直线 单调栈
题目描述:
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为
可见的,否则Li为被覆盖的.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=0
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.
题解:
一道很好的思维题。
1.简单手画一下,能被看到的直线应该是所有直线一起围成的大凸包。
2.由于是凸包,我们考虑将所有直线按斜率排序,从小到大依次加入到平面直角坐标系中。
3.我们考虑一下新加入直线的情况:
在这种情况中,我们可以看到新加入的红色直线与加入之前平面中斜率第二大的直线的交点位于先前第一大与第二大之左,显然,这就会挡住平面中斜率第二大的直线,我们就将该直线弹出,直到找到一个交点在新加入直线的交点左侧。
对于整个过程,直线的斜率单调递增,交点横坐标也单调递增,直接用单调栈维护即可。
时间复杂度为 $O(n)$
Code:
#include<cstdio>
#include<algorithm>
#include<string>
using namespace std;
void setIO(string a){
freopen((a+".in").c_str(),"r",stdin);
}
const int maxn=100000+5;
struct Line{
double slope, y;
}line[maxn];
int arr[maxn],ans[maxn],S[maxn],top;
bool cmp(int i,int j){
if(line[i].slope==line[j].slope) return line[i].y>line[j].y;
return line[i].slope<line[j].slope;
}
double get(int i,int j){
return (line[i].y-line[j].y)/(line[j].slope-line[i].slope);
}
int main(){
//setIO("input");
int n;
scanf("%d",&n);
for(int i=1;i<=n;++i) {
scanf("%lf%lf",&line[i].slope,&line[i].y);
arr[i]=i;
}
sort(arr+1,arr+1+n,cmp);
for(int i=1;i<=n;++i)
{
int cur=arr[i]; if(line[cur].slope==line[arr[i-1]].slope && i!=1) continue;
while(top>1 && get(S[top],S[top-1])>=get(arr[i],S[top])) --top;
S[++top]=cur;
ans[top]=cur;
}
sort(ans+1,ans+1+top);
for(int i=1;i<=top;++i) printf("%d ",ans[i]);
return 0;
}
[HNOI2008]水平可见直线 单调栈的更多相关文章
- BZOJ1007: [HNOI2008]水平可见直线(单调栈)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8638 Solved: 3327[Submit][Status][Discuss] Descripti ...
- bzoj1007: [HNOI2008]水平可见直线 单调栈维护凸壳
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3 ...
- bzoj1007 [HNOI2008]水平可见直线——单调栈
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1007 可以把直线按斜率从小到大排序,用单调栈维护,判断新直线与栈顶的交点和栈顶与它之前直线的 ...
- bzoj1007/luogu3194 水平可见直线 (单调栈)
先按斜率从小到大排序,然后如果排在后面的点B和前面的点A的交点是P,那B会把A在P的右半段覆盖掉,A会把B在P的左半段覆盖掉. 然后如果我们现在又进来了一条线,它跟上一条的交点还在上一条和上上条的左边 ...
- bzoj 1007 [HNOI2008]水平可见直线(单调栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5120 Solved: 1899[Submit][Sta ...
- BZOJ 1007 [HNOI2008]水平可见直线 (栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7940 Solved: 3030[Submit][Sta ...
- BZOJ 1007: [HNOI2008]水平可见直线 栈/计算几何
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB 题目连接 http://www.lydsy.com/JudgeOnline ...
- 【BZOJ1007】[HNOI2008]水平可见直线 半平面交
[BZOJ1007][HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见 ...
- 【bzoj1007】[HNOI2008]水平可见直线
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5932 Solved: 2254[Submit][Sta ...
随机推荐
- m_Orchestrate learning system---一、amazeui如何使用
m_Orchestrate learning system---一.amazeui如何使用 一.总结 一句话总结:先花几分钟把所有功能稍微看一下,然后做的时候就会特别快,所以,多学习,学得越多做的越快 ...
- java 后台实现ajax post跨域请求传递json格式数据获取json数据问题
参考大神:http://blog.csdn.net/chunqiuwei/article/details/19924821 java后台: public String ajaxProxy(Intege ...
- CentOS 安装 MySQL8
@Linux 官网:https://dev.mysql.com/doc/refman/8.0/en/binary-installation.html 个人博客:https://www.xingchen ...
- (转载)Android支付宝支付封装代码
Android支付宝支付封装代码 投稿:lijiao 字体:[增加 减小] 类型:转载 时间:2015-12-22我要评论 这篇文章主要介绍了Android支付宝支付封装代码,Android支付的时候 ...
- (转载)15 个 Android 通用流行框架大全
15 个 Android 通用流行框架大全 时间:2017-03-20 11:36来源:未知 作者:admin 点击: 2089 次 15 个 Android 通用流行框架大全 1. 缓存 Dis ...
- Debian/Linux 下无线网卡驱动的安装
我的 PC 型号是 Acer V3-572G, 安装了 Debian 后, 发现只能通过有线网络上网, 无法识别无线网卡, 以下是解决的过程(不局限于此型号 PC): 在命令行键入 lspci , 得 ...
- SAI / PS绘画一个卡通女孩详解
本教程介绍使用SAI / PS绘画一个卡通女孩的教程 ,教程很详细,动起你的小手一起来试试吧! 软件下载:http://www.dongmansoft.com/xiazai.html 想要Get到更多 ...
- day02变量
一. 什么是变量? 变量:在程序运行过程中,值会发生变化的量.(与之相对应的,常量就是在程序运行过程中,值不会发生变化的量).无论是变量还是常量,在创建时都会在内存中开辟一块空间,用于保存它的值. 二 ...
- BZOJ 3261 最大异或和 (可持久化01Trie)
题目大意:让你维护一个序列,支持在序列末插入一个数,支持询问$[l,r]$区间内选择一个位置$p$,使$xor\sum_{i=p}^{n}a_{i}$最大 可持久化$01Trie$裸题,把 区间异或和 ...
- docker-ce-17.03.2 离线安装RPM包
[root@docker05 docker]# ll total 20796 -rw-r--r-- 1 root root 75032 Mar 26 23:52 audit-libs-pytho ...